kenlm
This commit is contained in:
parent
2535098bfb
commit
4da339c309
1
.gitignore
vendored
1
.gitignore
vendored
@ -9,3 +9,4 @@
|
||||
geval
|
||||
*in.tsv
|
||||
train_file.txt
|
||||
model.arpa
|
10519
dev-0/out.tsv
Normal file
10519
dev-0/out.tsv
Normal file
File diff suppressed because it is too large
Load Diff
48
run.py
48
run.py
@ -1,11 +1,14 @@
|
||||
#%%
|
||||
import pandas as pd
|
||||
import kenlm
|
||||
import csv
|
||||
import os
|
||||
import kenlm
|
||||
from nltk import word_tokenize
|
||||
from collections import defaultdict, Counter
|
||||
|
||||
#%%
|
||||
def clean(text):
|
||||
text = str(text).lower().strip().replace("’", "'").replace('\\n', " ").replace("'t", " not").replace("'s", " is").replace("'ll", " will").replace("'m", " am").replace("'ve", " have").replace(",", "").replace("-", "")
|
||||
text = str(text).lower().strip().replace("’", "'").replace('\\n', " ").replace("'t", " not").replace("'s", " is").replace("'ll", " will").replace("'m", " am").replace("'ve", " have").replace(",", "").replace("-", "").replace(".", "").replace("'", "".replace("”", ""))
|
||||
return text
|
||||
|
||||
train_in = pd.read_csv("train/in.tsv.xz", sep='\t', header=None, encoding="UTF-8", on_bad_lines="skip", quoting=csv.QUOTE_NONE, nrows=300000)[[6, 7]]
|
||||
@ -14,26 +17,49 @@ data = pd.concat([train_in, train_expected], axis=1)
|
||||
data = data[6] + data[0] + data[7]
|
||||
data = data.apply(clean)
|
||||
|
||||
with open("train_file.txt", "w+") as f:
|
||||
if not os.path.isfile('train_file.txt'):
|
||||
with open("train_file.txt", "w+") as f:
|
||||
for text in data:
|
||||
f.write(text + "\n")
|
||||
|
||||
#%%
|
||||
KENLM_BUILD_PATH='../kenlm/build'
|
||||
!$KENLM_BUILD_PATH/bin/lmplz -o 4 < train_file.txt > model.arpa
|
||||
!rm train_file.txt
|
||||
|
||||
#!../kenlm/build/bin/lmplz -o 4 < train_file.txt > model.arpa
|
||||
model = kenlm.Model("model.arpa")
|
||||
|
||||
#%%
|
||||
model = kenlm.Model("model.arpa")
|
||||
import nltk
|
||||
nltk.download('punkt')
|
||||
|
||||
#%%
|
||||
most_common = defaultdict(lambda: 0)
|
||||
for text in data:
|
||||
words = word_tokenize(text)
|
||||
if "d" in words:
|
||||
words.remove("d")
|
||||
for w in words:
|
||||
most_common[w] += 1
|
||||
most_common = Counter(most_common).most_common(8000)
|
||||
|
||||
#%%
|
||||
def predict(path, result_path):
|
||||
data = pd.read_csv(path, sep='\t', header=None, encoding="UTF-8", on_bad_lines="skip", quoting=csv.QUOTE_NONE)[7]
|
||||
with open(result_path, "w+", encoding="UTF-8") as f:
|
||||
for text in data:
|
||||
#test
|
||||
print(model.score(text, bos = True, eos = True))
|
||||
break
|
||||
result = {}
|
||||
for word in most_common:
|
||||
prob = model.score(text + f" {word[0]}")
|
||||
result[word[0]] = prob
|
||||
predictions = dict(Counter(result).most_common(6))
|
||||
result = ""
|
||||
for word, prob in predictions.items():
|
||||
result += f"{word}:{prob} "
|
||||
result = result.rstrip()
|
||||
if len(result) == 0:
|
||||
result = "a:0.2 the:0.2 to:0.2 of:0.1 and:0.1 of:0.1 :0.1"
|
||||
f.write(result + "\n")
|
||||
print(result)
|
||||
|
||||
|
||||
predict("dev-0/in.tsv.xz", "dev-0/out.tsv")
|
||||
predict("test-A/in.tsv.xz", "test-A/out.tsv")
|
||||
# %%
|
||||
|
7414
test-A/out.tsv
Normal file
7414
test-A/out.tsv
Normal file
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user