This commit is contained in:
Anna Nowak 2022-04-30 12:05:38 +02:00
parent 3161a6a902
commit 65d6426d68
3 changed files with 17945 additions and 17946 deletions

File diff suppressed because it is too large Load Diff

25
run.py
View File

@ -1,5 +1,5 @@
# -*- coding: utf-8 -*- # -*- coding: utf-8 -*-
"""Untitled0.ipynb """run
Automatically generated by Colaboratory. Automatically generated by Colaboratory.
@ -19,6 +19,10 @@ import regex as re
import csv import csv
import itertools import itertools
from os.path import exists from os.path import exists
from nltk import word_tokenize
import nltk
nltk.download('punkt')
vocab_size = 30000 vocab_size = 30000
embed_size = 150 embed_size = 150
@ -32,11 +36,7 @@ def clean(text):
return text return text
def get_words_from_line(line): def get_words_from_line(line):
line = line.rstrip() return word_tokenize(line)
yield '<s>'
for m in re.finditer(r'[\p{L}0-9\*]+|\p{P}+', line):
yield m.group(0).lower()
yield '</s>'
def get_word_lines_from_data(d): def get_word_lines_from_data(d):
@ -120,8 +120,6 @@ else:
vocab = train_dataset.vocab vocab = train_dataset.vocab
import nltk
nltk.download('punkt')
def predict(tokens): def predict(tokens):
ixs = torch.tensor(vocab.forward(tokens)).to(device) ixs = torch.tensor(vocab.forward(tokens)).to(device)
out = model(ixs) out = model(ixs)
@ -132,17 +130,16 @@ def predict(tokens):
result = "" result = ""
for word, prob in list(zip(top_words, top_probs)): for word, prob in list(zip(top_words, top_probs)):
result += f"{word}:{prob} " result += f"{word}:{prob} "
result += f':0.01' result += f':0.001'
return result return result
from nltk import word_tokenize
def predict_file(result_path, data): def predict_file(result_path, data):
with open(result_path, "w+", encoding="UTF-8") as f: with open(result_path, "w+", encoding="UTF-8") as f:
for row in data: for row in data:
result = {} result = {}
before = word_tokenize(clean(str(row)))[-1:] before = word_tokenize(clean(str(row)))[-1:]
if(len(before) < 1): if(len(before) < 1):
result = "a:0.2 the:0.2 to:0.2 of:0.1 and:0.1 of:0.1 :0.1" result = "the:0.2 be:0.2 to:0.2 of:0.1 and:0.1 a:0.1 :0.1"
else: else:
result = predict(before) result = predict(before)
f.write(result + "\n") f.write(result + "\n")
@ -151,8 +148,10 @@ def predict_file(result_path, data):
dev_data = pd.read_csv("gdrive/MyDrive/dev-0/in.tsv.xz", sep='\t', header=None, quoting=csv.QUOTE_NONE)[6] dev_data = pd.read_csv("gdrive/MyDrive/dev-0/in.tsv.xz", sep='\t', header=None, quoting=csv.QUOTE_NONE)[6]
dev_data = dev_data.apply(clean) dev_data = dev_data.apply(clean)
predict_file("dev-0/out.tsv", dev_data) predict_file("dev-0-out.tsv", dev_data)
test_data = pd.read_csv("gdrive/MyDrive/test-A/in.tsv.xz", sep='\t', header=None, quoting=csv.QUOTE_NONE)[6] test_data = pd.read_csv("gdrive/MyDrive/test-A/in.tsv.xz", sep='\t', header=None, quoting=csv.QUOTE_NONE)[6]
test_data = test_data.apply(clean) test_data = test_data.apply(clean)
predict_file("test-A/out.tsv", test_data) predict_file("test-A-out.tsv", test_data)
!cp -r "model1.bin" "gdrive/MyDrive/model1.bin"

File diff suppressed because it is too large Load Diff