v3
This commit is contained in:
parent
3161a6a902
commit
65d6426d68
21038
dev-0/out.tsv
21038
dev-0/out.tsv
File diff suppressed because it is too large
Load Diff
25
run.py
25
run.py
@ -1,5 +1,5 @@
|
|||||||
# -*- coding: utf-8 -*-
|
# -*- coding: utf-8 -*-
|
||||||
"""Untitled0.ipynb
|
"""run
|
||||||
|
|
||||||
Automatically generated by Colaboratory.
|
Automatically generated by Colaboratory.
|
||||||
|
|
||||||
@ -19,6 +19,10 @@ import regex as re
|
|||||||
import csv
|
import csv
|
||||||
import itertools
|
import itertools
|
||||||
from os.path import exists
|
from os.path import exists
|
||||||
|
from nltk import word_tokenize
|
||||||
|
|
||||||
|
import nltk
|
||||||
|
nltk.download('punkt')
|
||||||
|
|
||||||
vocab_size = 30000
|
vocab_size = 30000
|
||||||
embed_size = 150
|
embed_size = 150
|
||||||
@ -32,11 +36,7 @@ def clean(text):
|
|||||||
return text
|
return text
|
||||||
|
|
||||||
def get_words_from_line(line):
|
def get_words_from_line(line):
|
||||||
line = line.rstrip()
|
return word_tokenize(line)
|
||||||
yield '<s>'
|
|
||||||
for m in re.finditer(r'[\p{L}0-9\*]+|\p{P}+', line):
|
|
||||||
yield m.group(0).lower()
|
|
||||||
yield '</s>'
|
|
||||||
|
|
||||||
|
|
||||||
def get_word_lines_from_data(d):
|
def get_word_lines_from_data(d):
|
||||||
@ -120,8 +120,6 @@ else:
|
|||||||
|
|
||||||
vocab = train_dataset.vocab
|
vocab = train_dataset.vocab
|
||||||
|
|
||||||
import nltk
|
|
||||||
nltk.download('punkt')
|
|
||||||
def predict(tokens):
|
def predict(tokens):
|
||||||
ixs = torch.tensor(vocab.forward(tokens)).to(device)
|
ixs = torch.tensor(vocab.forward(tokens)).to(device)
|
||||||
out = model(ixs)
|
out = model(ixs)
|
||||||
@ -132,17 +130,16 @@ def predict(tokens):
|
|||||||
result = ""
|
result = ""
|
||||||
for word, prob in list(zip(top_words, top_probs)):
|
for word, prob in list(zip(top_words, top_probs)):
|
||||||
result += f"{word}:{prob} "
|
result += f"{word}:{prob} "
|
||||||
result += f':0.01'
|
result += f':0.001'
|
||||||
return result
|
return result
|
||||||
|
|
||||||
from nltk import word_tokenize
|
|
||||||
def predict_file(result_path, data):
|
def predict_file(result_path, data):
|
||||||
with open(result_path, "w+", encoding="UTF-8") as f:
|
with open(result_path, "w+", encoding="UTF-8") as f:
|
||||||
for row in data:
|
for row in data:
|
||||||
result = {}
|
result = {}
|
||||||
before = word_tokenize(clean(str(row)))[-1:]
|
before = word_tokenize(clean(str(row)))[-1:]
|
||||||
if(len(before) < 1):
|
if(len(before) < 1):
|
||||||
result = "a:0.2 the:0.2 to:0.2 of:0.1 and:0.1 of:0.1 :0.1"
|
result = "the:0.2 be:0.2 to:0.2 of:0.1 and:0.1 a:0.1 :0.1"
|
||||||
else:
|
else:
|
||||||
result = predict(before)
|
result = predict(before)
|
||||||
f.write(result + "\n")
|
f.write(result + "\n")
|
||||||
@ -151,8 +148,10 @@ def predict_file(result_path, data):
|
|||||||
|
|
||||||
dev_data = pd.read_csv("gdrive/MyDrive/dev-0/in.tsv.xz", sep='\t', header=None, quoting=csv.QUOTE_NONE)[6]
|
dev_data = pd.read_csv("gdrive/MyDrive/dev-0/in.tsv.xz", sep='\t', header=None, quoting=csv.QUOTE_NONE)[6]
|
||||||
dev_data = dev_data.apply(clean)
|
dev_data = dev_data.apply(clean)
|
||||||
predict_file("dev-0/out.tsv", dev_data)
|
predict_file("dev-0-out.tsv", dev_data)
|
||||||
|
|
||||||
test_data = pd.read_csv("gdrive/MyDrive/test-A/in.tsv.xz", sep='\t', header=None, quoting=csv.QUOTE_NONE)[6]
|
test_data = pd.read_csv("gdrive/MyDrive/test-A/in.tsv.xz", sep='\t', header=None, quoting=csv.QUOTE_NONE)[6]
|
||||||
test_data = test_data.apply(clean)
|
test_data = test_data.apply(clean)
|
||||||
predict_file("test-A/out.tsv", test_data)
|
predict_file("test-A-out.tsv", test_data)
|
||||||
|
|
||||||
|
!cp -r "model1.bin" "gdrive/MyDrive/model1.bin"
|
14828
test-A/out.tsv
14828
test-A/out.tsv
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user