changed encoding (GPT-2)
This commit is contained in:
parent
023903113d
commit
a7bc73667e
21038
dev-0/out.tsv
21038
dev-0/out.tsv
File diff suppressed because it is too large
Load Diff
278
run.py
278
run.py
@ -1,253 +1,59 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
"""run
|
||||
"""run - gpt.ipynb
|
||||
|
||||
Automatically generated by Colaboratory.
|
||||
|
||||
Original file is located at
|
||||
https://colab.research.google.com/drive/1vjpmLsNPjPLM1_5fBGbBYg-ZqdXQeGQH
|
||||
https://colab.research.google.com/drive/1YlyKQShvsB_4qBTfjdRm2ngeYAKpPtxt
|
||||
"""
|
||||
|
||||
!pip install transformers
|
||||
|
||||
from google.colab import drive
|
||||
drive.mount('/content/gdrive/')
|
||||
|
||||
# importy
|
||||
from torchtext.vocab import build_vocab_from_iterator
|
||||
from torch.utils.data import DataLoader
|
||||
import torch
|
||||
import pandas as pd
|
||||
import regex as re
|
||||
import torch
|
||||
import transformers
|
||||
import csv
|
||||
import itertools
|
||||
from os.path import exists
|
||||
import tensorflow as tf
|
||||
import re
|
||||
import numpy as np
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
vocab_size = 15000
|
||||
embed_size = 128
|
||||
lstm_size = 128
|
||||
tokenizer = AutoTokenizer.from_pretrained("gpt2")
|
||||
model = AutoModelForCausalLM.from_pretrained("gpt2")
|
||||
|
||||
# funkcje pomocnicze
|
||||
def clean(text):
|
||||
text = str(text).strip().lower()
|
||||
text = re.sub("’|>|<|\.|\\|\"|”|-|,|\*|:|\/", "", text)
|
||||
text = text.replace('\\n', " ").replace("'t", " not").replace("'s", " is").replace("'ll", " will").replace("'m", " am").replace("'ve", " have")
|
||||
text = text.replace("'", "")
|
||||
return text
|
||||
def predict(text):
|
||||
text = str.join(" ", text.split()[-50:])
|
||||
input_ids = tokenizer(text, return_tensors='pt')
|
||||
with torch.no_grad():
|
||||
logits = model(**input_ids).logits[:, -1, :]
|
||||
result = ""
|
||||
top = torch.topk(logits, 2)
|
||||
probs = tf.nn.softmax(top.values[0]).numpy().tolist()
|
||||
print(probs)
|
||||
for i in range(2):
|
||||
predicted_word = tokenizer.decode(top.indices[0][i], skip_special_tokens=True).split()[-1]
|
||||
sentence_score = probs[i]
|
||||
result+=f"{predicted_word}:{sentence_score} "
|
||||
result = result + " :0.2"
|
||||
return result
|
||||
|
||||
def get_words_from_line(line, specials = True):
|
||||
line = line.rstrip()
|
||||
if specials:
|
||||
yield '<s>'
|
||||
for m in re.finditer(r'[\p{L}0-9\*]+|\p{P}+', line):
|
||||
yield m.group(0).lower()
|
||||
if specials:
|
||||
yield '</s>'
|
||||
def predict_doc(input_path, output_path):
|
||||
data = pd.read_csv(input_path, sep='\t', on_bad_lines='skip', header=None, quoting=csv.QUOTE_NONE)[6]
|
||||
data = data.replace('\\\\n', "", regex=True)
|
||||
data = data.apply(lambda x: re.sub('[^a-zA-Z0-9] ', '', x))
|
||||
cnt = len(data)
|
||||
with open(output_path, 'w') as file:
|
||||
for i, row in enumerate(data):
|
||||
try:
|
||||
result = predict(row)
|
||||
except:
|
||||
result = "a:0.5 the:0.5"
|
||||
print(f"{i}/{cnt} {result}")
|
||||
file.write(result + '\n')
|
||||
|
||||
# predict_doc('gdrive/MyDrive/dev-0/in.tsv.xz', 'gdrive/MyDrive/dev-0/out.tsv')
|
||||
|
||||
def get_word_lines_from_data(d):
|
||||
for line in d:
|
||||
yield get_words_from_line(line)
|
||||
|
||||
class Model(torch.nn.Module):
|
||||
def __init__(self, vocabulary_size, embedding_size, lstm_size):
|
||||
super(Model, self).__init__()
|
||||
self.lstm_size = lstm_size
|
||||
self.embedding_dim = embedding_size
|
||||
self.num_layers = 3
|
||||
|
||||
self.embedding = torch.nn.Embedding(
|
||||
num_embeddings=vocab_size,
|
||||
embedding_dim=self.embedding_dim,
|
||||
)
|
||||
self.lstm = torch.nn.LSTM(
|
||||
input_size=self.lstm_size,
|
||||
hidden_size=self.lstm_size,
|
||||
num_layers=self.num_layers,
|
||||
dropout=0.2,
|
||||
)
|
||||
self.fc = torch.nn.Linear(self.lstm_size, vocab_size)
|
||||
|
||||
def forward(self, x, prev_state = None):
|
||||
embed = self.embedding(x)
|
||||
output, state = self.lstm(embed, prev_state)
|
||||
logits = self.fc(output)
|
||||
return logits, state
|
||||
|
||||
class Trigrams(torch.utils.data.IterableDataset):
|
||||
def __init__(self, data, vocabulary_size):
|
||||
self.vocab = build_vocab_from_iterator(
|
||||
get_word_lines_from_data(data),
|
||||
max_tokens = vocabulary_size,
|
||||
specials = ['<unk>'])
|
||||
self.vocab.set_default_index(self.vocab['<unk>'])
|
||||
self.vocabulary_size = vocabulary_size
|
||||
self.data = data
|
||||
|
||||
@staticmethod
|
||||
def look_ahead_iterator(gen):
|
||||
w1 = None
|
||||
for item in gen:
|
||||
if w1 is not None:
|
||||
yield (w1, item)
|
||||
w1 = item
|
||||
|
||||
def __iter__(self):
|
||||
return self.look_ahead_iterator(
|
||||
(self.vocab[t] for t in itertools.chain.from_iterable(get_word_lines_from_data(self.data))))
|
||||
|
||||
|
||||
# ładowanie danych treningowych
|
||||
train_in = pd.read_csv("gdrive/MyDrive/train/in.tsv.xz", sep='\t', header=None, encoding="UTF-8", on_bad_lines="skip", quoting=csv.QUOTE_NONE, nrows=20000)[[6, 7]]
|
||||
train_expected = pd.read_csv("gdrive/MyDrive/train/expected.tsv", sep='\t', header=None, encoding="UTF-8", on_bad_lines="skip", quoting=csv.QUOTE_NONE, nrows=20000)
|
||||
train_data = pd.concat([train_in, train_expected], axis=1)
|
||||
train_data = train_data[6] + train_data[0] + train_data[7]
|
||||
train_data = train_data.apply(clean)
|
||||
train_dataset = Trigrams(train_data, vocab_size)
|
||||
train_dataset_rev = Trigrams(train_data.iloc[::-1], vocab_size)
|
||||
|
||||
# trenowanie/wczytywanie modelu
|
||||
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
||||
model = Model(vocab_size, embed_size, lstm_size).to(device)
|
||||
print(device)
|
||||
|
||||
if(not exists('model1.bin')):
|
||||
data = DataLoader(train_dataset, batch_size=8000)
|
||||
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
|
||||
criterion = torch.nn.CrossEntropyLoss()
|
||||
|
||||
model.train()
|
||||
step = 0
|
||||
for i in range(1):
|
||||
print(f"EPOCH {i}=========================")
|
||||
for x, y in data:
|
||||
optimizer.zero_grad()
|
||||
x = x.to(device)
|
||||
y = y.to(device)
|
||||
|
||||
y_pred, state_h = model(x)
|
||||
loss = criterion(y_pred, y)
|
||||
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
if step % 100 == 0:
|
||||
print(step, loss)
|
||||
step += 1
|
||||
|
||||
torch.save(model.state_dict(), 'model1.bin')
|
||||
else:
|
||||
print("Loading model1")
|
||||
model.load_state_dict(torch.load('model1.bin'))
|
||||
|
||||
|
||||
vocab = train_dataset.vocab
|
||||
|
||||
# trenowanie/wczytywanie modelu
|
||||
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
||||
model_b = Model(vocab_size, embed_size, lstm_size).to(device)
|
||||
print(device)
|
||||
|
||||
if(not exists('model1_b.bin')):
|
||||
data_b = DataLoader(train_dataset_rev, batch_size=8000)
|
||||
optimizer = torch.optim.Adam(model_b.parameters(), lr=0.001)
|
||||
criterion = torch.nn.CrossEntropyLoss()
|
||||
|
||||
model_b.train()
|
||||
step = 0
|
||||
for i in range(1):
|
||||
print(f"EPOCH {i}=========================")
|
||||
for x, y in data:
|
||||
optimizer.zero_grad()
|
||||
x = x.to(device)
|
||||
y = y.to(device)
|
||||
|
||||
y_pred, state_h = model_b(x)
|
||||
loss = criterion(y_pred, y)
|
||||
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
if step % 100 == 0:
|
||||
print(step, loss)
|
||||
step += 1
|
||||
|
||||
torch.save(model_b.state_dict(), 'model1_b.bin')
|
||||
else:
|
||||
print("Loading model1")
|
||||
model_b.load_state_dict(torch.load('model1_b.bin'))
|
||||
|
||||
import numpy as np
|
||||
|
||||
def predict(tokens_left, tokens_right):
|
||||
ixs = torch.tensor(vocab.forward(tokens_left)).to(device)
|
||||
ixs_r = torch.tensor(vocab.forward(tokens_right)).to(device)
|
||||
|
||||
out = model(ixs)
|
||||
out_b = model_b(ixs_r)
|
||||
|
||||
top = torch.topk(out[0], 8)
|
||||
top_b = torch.topk(out_b[0], 8)
|
||||
top_indices = top.indices.tolist()[0]
|
||||
top_probs = top.values.tolist()[0]
|
||||
top_indices_b = top_b.indices.tolist()[0]
|
||||
top_probs_b = top_b.values.tolist()[0]
|
||||
|
||||
|
||||
raw_result = []
|
||||
for ind in set(top_indices + top_indices_b):
|
||||
prob = 0
|
||||
if(ind in top_indices):
|
||||
prob += top_probs[top_indices.index(ind)]
|
||||
if(ind in top_indices_b):
|
||||
prob += top_probs_b[top_indices_b.index(ind)]
|
||||
raw_result += [[vocab.lookup_token(ind), prob]]
|
||||
raw_result = list(filter(lambda x: x[0] != "<unk>", raw_result))
|
||||
raw_result = sorted(raw_result, key=lambda x: -x[1])[:8]
|
||||
|
||||
words = [x[0] for x in raw_result]
|
||||
probs = [x[1] for x in raw_result]
|
||||
|
||||
probs_x = np.exp(probs)/sum(np.exp(probs))
|
||||
result = ""
|
||||
for word, prob in list(zip(words,probs_x)):
|
||||
result += f"{word}:{prob} "
|
||||
result += ":0.3"
|
||||
result = result.rstrip()
|
||||
return result
|
||||
|
||||
from nltk import word_tokenize
|
||||
def predict_file(result_path, data):
|
||||
with open(result_path, "w+", encoding="UTF-8") as f:
|
||||
for index, row in data.iterrows():
|
||||
result = {}
|
||||
before = None
|
||||
after = None
|
||||
for after in get_words_from_line(clean(str(row[7])), False):
|
||||
after = [after]
|
||||
break
|
||||
for before in get_words_from_line(clean(str(row[6])), False):
|
||||
pass
|
||||
before = [before]
|
||||
if(len(before) < 1 and len(after) < 1):
|
||||
result = "a:0.2 the:0.2 to:0.2 of:0.1 and:0.1 of:0.1 :0.1"
|
||||
else:
|
||||
result = predict(before, after)
|
||||
result = result.strip()
|
||||
print(result)
|
||||
f.write(result + "\n")
|
||||
|
||||
|
||||
dev_data = pd.read_csv("gdrive/MyDrive/dev-0/in.tsv.xz", sep='\t', header=None, quoting=csv.QUOTE_NONE)
|
||||
dev_data[6] = dev_data[6].apply(clean)
|
||||
dev_data[7] = dev_data[7].apply(clean)
|
||||
|
||||
predict_file("gdrive/MyDrive/dev-0/out.tsv", dev_data)
|
||||
|
||||
test_data = pd.read_csv("gdrive/MyDrive/test-A/in.tsv.xz", sep='\t', header=None, quoting=csv.QUOTE_NONE)
|
||||
test_data[6] = test_data[6].apply(clean)
|
||||
test_data[7] = test_data[7].apply(clean)
|
||||
predict_file("gdrive/MyDrive/test-A/out.tsv", test_data)
|
||||
|
||||
# !wget https://gonito.net/get/bin/geval
|
||||
# !chmod 777 geval
|
||||
|
||||
!rm -r dev-0
|
||||
|
||||
!cp -r gdrive/MyDrive/dev-0 dev-0
|
||||
!./geval -t dev-0 --metric PerplexityHashed
|
||||
predict_doc('gdrive/MyDrive/test-A/in.tsv.xz', 'gdrive/MyDrive/test-A/out.tsv')
|
14828
test-A/out.tsv
14828
test-A/out.tsv
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user