This commit is contained in:
Anna Nowak 2022-05-01 11:20:13 +02:00
parent 65d6426d68
commit b61e3e981c
3 changed files with 17958 additions and 17947 deletions

File diff suppressed because it is too large Load Diff

39
run.py
View File

@ -19,10 +19,6 @@ import regex as re
import csv import csv
import itertools import itertools
from os.path import exists from os.path import exists
from nltk import word_tokenize
import nltk
nltk.download('punkt')
vocab_size = 30000 vocab_size = 30000
embed_size = 150 embed_size = 150
@ -35,15 +31,20 @@ def clean(text):
text = text.replace("'", "") text = text.replace("'", "")
return text return text
def get_words_from_line(line): def get_words_from_line(line, specials = True):
return word_tokenize(line) line = line.rstrip()
if specials:
yield '<s>'
for m in re.finditer(r'[\p{L}0-9\*]+|\p{P}+', line):
yield m.group(0).lower()
if specials:
yield '</s>'
def get_word_lines_from_data(d): def get_word_lines_from_data(d):
for line in d: for line in d:
yield get_words_from_line(line) yield get_words_from_line(line)
class Model(torch.nn.Module): class Model(torch.nn.Module):
def __init__(self, vocabulary_size, embedding_size): def __init__(self, vocabulary_size, embedding_size):
super(Model, self).__init__() super(Model, self).__init__()
@ -115,6 +116,7 @@ if(not exists('model1.bin')):
torch.save(model.state_dict(), 'model1.bin') torch.save(model.state_dict(), 'model1.bin')
else: else:
print("Loading model1")
model.load_state_dict(torch.load('model1.bin')) model.load_state_dict(torch.load('model1.bin'))
@ -123,35 +125,44 @@ vocab = train_dataset.vocab
def predict(tokens): def predict(tokens):
ixs = torch.tensor(vocab.forward(tokens)).to(device) ixs = torch.tensor(vocab.forward(tokens)).to(device)
out = model(ixs) out = model(ixs)
top = torch.topk(out[0], 10) top = torch.topk(out[0], 8)
top_indices = top.indices.tolist() top_indices = top.indices.tolist()
top_probs = top.values.tolist() top_probs = top.values.tolist()
top_words = vocab.lookup_tokens(top_indices) top_words = vocab.lookup_tokens(top_indices)
result = "" result = ""
for word, prob in list(zip(top_words, top_probs)): for word, prob in list(zip(top_words, top_probs)):
result += f"{word}:{prob} " result += f"{word}:{prob} "
result += f':0.001' # result += f':0.01'
return result return result
from nltk import word_tokenize
def predict_file(result_path, data): def predict_file(result_path, data):
with open(result_path, "w+", encoding="UTF-8") as f: with open(result_path, "w+", encoding="UTF-8") as f:
for row in data: for row in data:
result = {} result = {}
before = word_tokenize(clean(str(row)))[-1:] before = None
for before in get_words_from_line(clean(str(row)), False):
pass
before = [before]
print(before)
if(len(before) < 1): if(len(before) < 1):
result = "the:0.2 be:0.2 to:0.2 of:0.1 and:0.1 a:0.1 :0.1" result = "a:0.2 the:0.2 to:0.2 of:0.1 and:0.1 of:0.1 :0.1"
else: else:
result = predict(before) result = predict(before)
result = result.strip()
f.write(result + "\n") f.write(result + "\n")
print(result) print(result)
dev_data = pd.read_csv("gdrive/MyDrive/dev-0/in.tsv.xz", sep='\t', header=None, quoting=csv.QUOTE_NONE)[6] dev_data = pd.read_csv("gdrive/MyDrive/dev-0/in.tsv.xz", sep='\t', header=None, quoting=csv.QUOTE_NONE)[6]
dev_data = dev_data.apply(clean) dev_data = dev_data.apply(clean)
predict_file("dev-0-out.tsv", dev_data) predict_file("gdrive/MyDrive/dev-0/out.tsv", dev_data)
test_data = pd.read_csv("gdrive/MyDrive/test-A/in.tsv.xz", sep='\t', header=None, quoting=csv.QUOTE_NONE)[6] test_data = pd.read_csv("gdrive/MyDrive/test-A/in.tsv.xz", sep='\t', header=None, quoting=csv.QUOTE_NONE)[6]
test_data = test_data.apply(clean) test_data = test_data.apply(clean)
predict_file("test-A-out.tsv", test_data) predict_file("gdrive/MyDrive/test-A/out.tsv", test_data)
!cp -r "model1.bin" "gdrive/MyDrive/model1.bin" !cp -r gdrive/MyDrive/dev-0 dev-0
!./geval -t dev-0 --metric PerplexityHashed
!rm -r dev-0

File diff suppressed because it is too large Load Diff