#%% # importy from torchtext.vocab import build_vocab_from_iterator from torch.utils.data import DataLoader import torch import pandas as pd import regex as re import csv import itertools from os.path import exists vocab_size = 30000 embed_size = 150 #%% # funkcje pomocnicze def clean(text): text = str(text).strip().lower() text = re.sub("’|>|<|\.|\\|\"|”|-|,|\*|:|\/", "", text) text = text.replace('\\n', " ").replace("'t", " not").replace("'s", " is").replace("'ll", " will").replace("'m", " am").replace("'ve", " have") text = text.replace("'", "") return text def get_words_from_line(line): line = line.rstrip() yield '' for m in re.finditer(r'[\p{L}0-9\*]+|\p{P}+', line): yield m.group(0).lower() yield '' def get_word_lines_from_data(d): for line in d: yield get_words_from_line(line) #%% class Model(torch.nn.Module): def __init__(self, vocabulary_size, embedding_size): super(Model, self).__init__() self.model = torch.nn.Sequential( torch.nn.Embedding(vocabulary_size, embedding_size), torch.nn.Linear(embedding_size, vocabulary_size), torch.nn.Softmax() ) def forward(self, x): return self.model(x) #%% class Trigrams(torch.utils.data.IterableDataset): def __init__(self, data, vocabulary_size): self.vocab = build_vocab_from_iterator( get_word_lines_from_data(data), max_tokens = vocabulary_size, specials = ['']) self.vocab.set_default_index(self.vocab['']) self.vocabulary_size = vocabulary_size self.data = data @staticmethod def look_ahead_iterator(gen): w1 = None for item in gen: if w1 is not None: yield (w1, item) w1 = item def __iter__(self): return self.look_ahead_iterator( (self.vocab[t] for t in itertools.chain.from_iterable(get_word_lines_from_data(self.data)))) #%% # ładowanie danych treningowych train_in = pd.read_csv("train/in.tsv.xz", sep='\t', header=None, encoding="UTF-8", on_bad_lines="skip", quoting=csv.QUOTE_NONE, nrows=300000)[[6, 7]] train_expected = pd.read_csv("train/expected.tsv", sep='\t', header=None, encoding="UTF-8", on_bad_lines="skip", quoting=csv.QUOTE_NONE, nrows=300000) train_data = pd.concat([train_in, train_expected], axis=1) train_data = train_data[6] + train_data[0] + train_data[7] train_data = train_data.apply(clean) train_dataset = Trigrams(train_data, vocab_size) #%% # trenowanie/wczytywanie modelu device = 'cuda' if torch.cuda.is_available() else 'cpu' model = Model(vocab_size, embed_size).to(device) if(not exists('model1.bin')): data = DataLoader(train_dataset, batch_size=200) optimizer = torch.optim.Adam(model.parameters()) criterion = torch.nn.NLLLoss() model.train() step = 0 for x, y in data: x = x.to(device) y = y.to(device) optimizer.zero_grad() ypredicted = model(x) loss = criterion(torch.log(ypredicted), y) if step % 100 == 0: print(step, loss) step += 1 loss.backward() optimizer.step() torch.save(model.state_dict(), 'model1.bin') else: model.load_state_dict(torch.load('model1.bin')) #%% vocab = train_dataset.vocab def predict(tokens): ixs = torch.tensor(vocab.forward(tokens)).to(device) out = model(ixs) top = torch.topk(out[0], 10) top_indices = top.indices.tolist() top_probs = top.values.tolist() top_words = vocab.lookup_tokens(top_indices) result = "" for word, prob in list(zip(top_words, top_probs)): result += f"{word}:{prob} " result += f':0.01' return result from nltk import word_tokenize def predict_file(result_path, data): with open(result_path, "w+", encoding="UTF-8") as f: for row in data: result = {} before = word_tokenize(clean(str(row)))[-1:] if(len(before) < 1): result = "a:0.2 the:0.2 to:0.2 of:0.1 and:0.1 of:0.1 :0.1" else: result = predict(before) f.write(result + "\n") print(result) #%% dev_data = pd.read_csv("dev-0/in.tsv.xz", sep='\t', header=None, quoting=csv.QUOTE_NONE)[6] dev_data = dev_data.apply(clean) predict_file("dev-0/out.tsv", dev_data) test_data = pd.read_csv("test-A/in.tsv.xz", sep='\t', header=None, quoting=csv.QUOTE_NONE)[6] test_data = test_data.apply(clean) predict_file("test-A/out.tsv", test_data)