Dodanie dockerfile
This commit is contained in:
parent
98001262bc
commit
cbdebbbd53
1
.gitignore
vendored
1
.gitignore
vendored
@ -59,3 +59,4 @@ docs/source/changelog.md
|
||||
fifa19*
|
||||
*.csv
|
||||
stat.txt
|
||||
.venv/
|
10
Dockerfile
Normal file
10
Dockerfile
Normal file
@ -0,0 +1,10 @@
|
||||
FROM ubuntu:latest
|
||||
RUN apt update && apt install -y python3.8 && apt install -y python3-pip
|
||||
|
||||
WORKDIR /app
|
||||
|
||||
COPY ["requirements.txt", "./"]
|
||||
RUN pip3 install -r requirements.txt
|
||||
|
||||
COPY ["Zadanie 1.py", "."]
|
||||
CMD python3.8 "Zadanie 1.py"
|
2
Jenkinsfile
vendored
2
Jenkinsfile
vendored
@ -42,3 +42,5 @@ pipeline {
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//docker run -e KAGGLE_KEY -e KAGGLE_USERNAME -ti ium_434760:latest
|
@ -1,2 +1,3 @@
|
||||
# ium_434760
|
||||
|
||||
## Uruchomienie
|
||||
docker run -e KAGGLE_KEY -e KAGGLE_USERNAME -ti adnovac/ium_s434760:latest
|
@ -45,7 +45,9 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 208,
|
||||
"metadata": {},
|
||||
"metadata": {
|
||||
"scrolled": true
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
@ -78,6 +80,8 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import zipfile\n",
|
||||
"import pandas as pd\n",
|
||||
"from sklearn.model_selection import train_test_split\n",
|
||||
"\n",
|
||||
"with zipfile.ZipFile('fifa19.zip', 'r') as zip_ref:\n",
|
||||
" zip_ref.extractall('.')"
|
||||
@ -136,8 +140,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import pandas as pd\n",
|
||||
"from sklearn.model_selection import train_test_split\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"df=pd.read_csv('data.csv')\n",
|
||||
"train, dev = train_test_split(df, train_size=0.6, test_size=0.4, shuffle=True)\n",
|
||||
|
35
Zadanie 1.py
Normal file
35
Zadanie 1.py
Normal file
@ -0,0 +1,35 @@
|
||||
import zipfile
|
||||
import os
|
||||
import pandas as pd
|
||||
from sklearn.model_selection import train_test_split
|
||||
|
||||
if os.getenv("KAGGLE_KEY") is None or os.getenv("KAGGLE_USERNAME") is None:
|
||||
print("Brak zmiennych środowiskowych KAGGLE_KEY lub KAAGLE_USERNAME")
|
||||
exit()
|
||||
|
||||
if not os.path.isfile('fifa19.zip'):
|
||||
os.system('kaggle datasets download -d karangadiya/fifa19')
|
||||
|
||||
with zipfile.ZipFile('fifa19.zip', 'r') as zip_ref:
|
||||
zip_ref.extractall('.')
|
||||
|
||||
df=pd.read_csv('data.csv')
|
||||
df = df[df["Release Clause"].notna()]
|
||||
df = df[df["Release Clause"].notnull()]
|
||||
|
||||
if df["Overall"].mean() > 1:
|
||||
df["Overall"]= df["Overall"]/100
|
||||
|
||||
df["Release Clause"] = df["Release Clause"].str.replace("€", "")
|
||||
|
||||
df["Release Clause"] = (df["Release Clause"].replace(r'[KM]+$', '', regex=True).astype(float) *
|
||||
df["Release Clause"].str.extract(r'[\d\.]+([KM]+)', expand=False)
|
||||
.replace(['K','M'], [1000, 1000000]).astype(int))
|
||||
|
||||
df.to_csv('data.csv')
|
||||
train, dev = train_test_split(df, train_size=0.6, test_size=0.4, shuffle=True)
|
||||
dev, test = train_test_split(dev, train_size=0.5, test_size=0.5, shuffle=False)
|
||||
|
||||
test.to_csv('test.csv')
|
||||
dev.to_csv('dev.csv')
|
||||
train.to_csv('train.csv')
|
4
requirements.txt
Normal file
4
requirements.txt
Normal file
@ -0,0 +1,4 @@
|
||||
kaggle
|
||||
pandas
|
||||
numpy
|
||||
sklearn
|
Loading…
Reference in New Issue
Block a user