auta-public/main.py

59 lines
2.1 KiB
Python
Raw Normal View History

2021-05-15 16:59:59 +02:00
import pandas as pd
from pandas import DataFrame
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
import numpy as np
df = pd.read_csv("train/train.tsv", header=None, sep="\t", error_bad_lines=False)
dev0 = pd.read_csv("dev-0/in.tsv", header=None, sep="\t", error_bad_lines=False)
testA = pd.read_csv("test-A/in.tsv", header=None, sep="\t", error_bad_lines=False)
expected = pd.read_csv("dev-0/expected.tsv", header=None, sep="\t", error_bad_lines=False)
all_df = df.copy()
test_dev0 = dev0.copy()
test_dev0.insert(0, "dum", 0, True)
test_dev0 = test_dev0.rename(columns={"dum": 0, 0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6})
all_df = all_df.append(test_dev0, ignore_index=True)
test_testA = testA.copy()
test_testA.insert(0, "dum", 0, True)
test_testA = test_testA.rename(columns={"dum": 0, 0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6})
all_df = all_df.append(test_testA, ignore_index=True)
all_df = pd.get_dummies(all_df, columns=[3, 4])
min_val = np.min(all_df)
max_val = np.max(all_df)
all_df = (all_df - min_val) / (max_val - min_val)
dummy_df = all_df[:len(df)]
dummy_dev0 = all_df[len(df):len(df) + len(dev0)]
dummy_testA = all_df[len(df) + len(dev0):]
X = dummy_df[dummy_df.columns[1:]]
Y = dummy_df[dummy_df.columns[:1]]
model = LinearRegression().fit(X, Y)
predicted_dev0 = model.predict(dummy_dev0[dummy_dev0.columns[1:]])
predicted_testA = model.predict(dummy_testA[dummy_testA.columns[1:]])
with open("dev-0/out.tsv", "w") as file:
for pred in predicted_dev0:
file.write(str(pred[0]) + "\n")
with open("test-A/out.tsv", "w") as file:
for pred in predicted_testA:
file.write(str(pred[0]) + "\n")
predicted_denormalized = []
for pred in predicted_dev0:
predicted_denormalized.append(pred[0] * (max_val[0] - min_val[0]) + min_val[0])
predicted_denormalized = DataFrame(predicted_denormalized, columns=['pred'])
error = mean_squared_error(expected, predicted_denormalized)
for exp, pred in zip(expected.values, predicted_denormalized.values):
print(exp, pred)
f = open("dev0_rmse.txt", "w")
f.write(str(error))
f.close()