ium_434765/neural_network.py

41 lines
1.1 KiB
Python
Raw Normal View History

2021-04-24 21:18:57 +02:00
import pandas as pd
2021-04-24 22:23:04 +02:00
import numpy as np
from tensorflow import keras
2021-04-24 21:18:57 +02:00
2021-04-24 22:23:04 +02:00
data = pd.read_csv("data_train", sep=',', error_bad_lines=False).dropna()
X = data.loc[:,data.columns == "2805317"].astype(int)
y = data.loc[:,data.columns == "198909"].astype(int)
def NormalizeData(data):
return (data - np.min(data)) / (np.max(data) - np.min(data))
X = NormalizeData(X)
y = NormalizeData(y)
model = keras.Sequential([
2021-05-17 18:56:39 +02:00
keras.layers.Dense(32,input_dim = X.shape[1], activation='relu'),
keras.layers.Dense(64, activation='relu'),
keras.layers.Dense(1,activation='relu'),
2021-04-24 22:23:04 +02:00
])
model.compile(loss='mean_absolute_error', optimizer='adam', metrics=['mean_absolute_error'])
2021-05-17 18:48:14 +02:00
model.fit(X, y, epochs=15, validation_split = 0.3)
2021-04-24 22:23:04 +02:00
data = pd.read_csv("data_test", sep=',', error_bad_lines=False).dropna()
X_test = data.loc[:,data.columns == "2805317"].astype(int)
y_test = data.loc[:,data.columns == "198909"].astype(int)
X_test = NormalizeData(X_test)
y_test = NormalizeData(y_test)
prediction = model.predict(X_test)
f = open("predictions.txt", "w")
for (pred, test) in zip(prediction, y_test.values):
f.write("predicted: %s expected: %s\n" % (str(pred), str(test)))