This commit is contained in:
parent
b0346d0b62
commit
3e23841578
@ -8,6 +8,8 @@ RUN pip3 install pandas
|
||||
RUN pip3 install kaggle
|
||||
RUN pip3 install tensorflow
|
||||
RUN pip3 install sklearn
|
||||
RUN pip3 install pymongo
|
||||
RUN pip3 install sacred
|
||||
COPY ./data_train ./
|
||||
COPY ./data_dev ./
|
||||
COPY ./neural_network.sh ./
|
||||
|
@ -17,7 +17,7 @@ node {
|
||||
|
||||
}
|
||||
stage('Clone repo') {
|
||||
try { docker.image("karopa/ium:19").inside {
|
||||
/*try {*/ docker.image("karopa/ium:21").inside {
|
||||
stage('Test') {
|
||||
checkout([$class: 'GitSCM', branches: [[name: '*/master']], doGenerateSubmoduleConfigurations: false, extensions: [], submoduleCfg: [], userRemoteConfigs: [[url: 'https://git.wmi.amu.edu.pl/s434765/ium_434765']]])
|
||||
copyArtifacts fingerprintArtifacts: true, projectName: 's434765-create-dataset', selector: buildParameter("BUILD_SELECTOR")
|
||||
@ -28,8 +28,9 @@ node {
|
||||
'''
|
||||
archiveArtifacts 'output.txt'
|
||||
archiveArtifacts 'model/**/*.*'
|
||||
archiveArtifacts 'my_runs/**/*.*'
|
||||
}
|
||||
emailext body: 'Successful build',
|
||||
/* emailext body: 'Successful build',
|
||||
subject: "s434765",
|
||||
to: "26ab8f35.uam.onmicrosoft.com@emea.teams.ms"
|
||||
}
|
||||
@ -39,7 +40,7 @@ node {
|
||||
emailext body: 'Failed build',
|
||||
subject: "s434765",
|
||||
to: "26ab8f35.uam.onmicrosoft.com@emea.teams.ms"
|
||||
throw e
|
||||
throw e*/
|
||||
}
|
||||
}
|
||||
stage ("build evaluation") {
|
||||
|
BIN
evaluation.png
Normal file
BIN
evaluation.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 28 KiB |
9
model/keras_metadata.pb
Normal file
9
model/keras_metadata.pb
Normal file
File diff suppressed because one or more lines are too long
BIN
model/saved_model.pb
Normal file
BIN
model/saved_model.pb
Normal file
Binary file not shown.
BIN
model/variables/variables.data-00000-of-00001
Normal file
BIN
model/variables/variables.data-00000-of-00001
Normal file
Binary file not shown.
BIN
model/variables/variables.index
Normal file
BIN
model/variables/variables.index
Normal file
Binary file not shown.
4
my_runs/1/config.json
Normal file
4
my_runs/1/config.json
Normal file
@ -0,0 +1,4 @@
|
||||
{
|
||||
"epochs_amount": 30,
|
||||
"seed": 511320143
|
||||
}
|
79
my_runs/1/cout.txt
Normal file
79
my_runs/1/cout.txt
Normal file
@ -0,0 +1,79 @@
|
||||
views 0
|
||||
dtype: int32
|
||||
views 488
|
||||
dtype: int32
|
||||
likes 1
|
||||
dtype: int32
|
||||
likes 3345
|
||||
dtype: int32
|
||||
Epoch 1/30
|
||||
1/19 [>.............................] - ETA: 6s - loss: 0.0834 - mean_absolute_error: 0.0834
19/19 [==============================] - 1s 10ms/step - loss: 0.0679 - mean_absolute_error: 0.0679 - val_loss: 0.0670 - val_mean_absolute_error: 0.0670
|
||||
Epoch 2/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.1142 - mean_absolute_error: 0.1142
19/19 [==============================] - 0s 2ms/step - loss: 0.0657 - mean_absolute_error: 0.0657 - val_loss: 0.0530 - val_mean_absolute_error: 0.0530
|
||||
Epoch 3/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0940 - mean_absolute_error: 0.0940
19/19 [==============================] - 0s 2ms/step - loss: 0.0608 - mean_absolute_error: 0.0608 - val_loss: 0.0600 - val_mean_absolute_error: 0.0600
|
||||
Epoch 4/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0524 - mean_absolute_error: 0.0524
19/19 [==============================] - 0s 2ms/step - loss: 0.0521 - mean_absolute_error: 0.0521 - val_loss: 0.0541 - val_mean_absolute_error: 0.0541
|
||||
Epoch 5/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0440 - mean_absolute_error: 0.0440
19/19 [==============================] - 0s 2ms/step - loss: 0.0518 - mean_absolute_error: 0.0518 - val_loss: 0.0541 - val_mean_absolute_error: 0.0541
|
||||
Epoch 6/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0576 - mean_absolute_error: 0.0576
19/19 [==============================] - 0s 2ms/step - loss: 0.0579 - mean_absolute_error: 0.0579 - val_loss: 0.0523 - val_mean_absolute_error: 0.0523
|
||||
Epoch 7/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0310 - mean_absolute_error: 0.0310
19/19 [==============================] - 0s 2ms/step - loss: 0.0497 - mean_absolute_error: 0.0497 - val_loss: 0.0523 - val_mean_absolute_error: 0.0523
|
||||
Epoch 8/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0628 - mean_absolute_error: 0.0628
19/19 [==============================] - 0s 2ms/step - loss: 0.0531 - mean_absolute_error: 0.0531 - val_loss: 0.0551 - val_mean_absolute_error: 0.0551
|
||||
Epoch 9/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0425 - mean_absolute_error: 0.0425
19/19 [==============================] - 0s 2ms/step - loss: 0.0543 - mean_absolute_error: 0.0543 - val_loss: 0.0527 - val_mean_absolute_error: 0.0527
|
||||
Epoch 10/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0560 - mean_absolute_error: 0.0560
19/19 [==============================] - 0s 2ms/step - loss: 0.0549 - mean_absolute_error: 0.0549 - val_loss: 0.0525 - val_mean_absolute_error: 0.0525
|
||||
Epoch 11/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0391 - mean_absolute_error: 0.0391
19/19 [==============================] - 0s 2ms/step - loss: 0.0520 - mean_absolute_error: 0.0520 - val_loss: 0.0556 - val_mean_absolute_error: 0.0556
|
||||
Epoch 12/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0417 - mean_absolute_error: 0.0417
19/19 [==============================] - 0s 2ms/step - loss: 0.0578 - mean_absolute_error: 0.0578 - val_loss: 0.0522 - val_mean_absolute_error: 0.0522
|
||||
Epoch 13/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0834 - mean_absolute_error: 0.0834
19/19 [==============================] - 0s 2ms/step - loss: 0.0605 - mean_absolute_error: 0.0605 - val_loss: 0.0532 - val_mean_absolute_error: 0.0532
|
||||
Epoch 14/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0430 - mean_absolute_error: 0.0430
19/19 [==============================] - 0s 2ms/step - loss: 0.0582 - mean_absolute_error: 0.0582 - val_loss: 0.0526 - val_mean_absolute_error: 0.0526
|
||||
Epoch 15/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0506 - mean_absolute_error: 0.0506
19/19 [==============================] - 0s 2ms/step - loss: 0.0512 - mean_absolute_error: 0.0512 - val_loss: 0.0533 - val_mean_absolute_error: 0.0533
|
||||
Epoch 16/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0402 - mean_absolute_error: 0.0402
19/19 [==============================] - 0s 2ms/step - loss: 0.0514 - mean_absolute_error: 0.0514 - val_loss: 0.0537 - val_mean_absolute_error: 0.0537
|
||||
Epoch 17/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0247 - mean_absolute_error: 0.0247
19/19 [==============================] - 0s 2ms/step - loss: 0.0463 - mean_absolute_error: 0.0463 - val_loss: 0.0519 - val_mean_absolute_error: 0.0519
|
||||
Epoch 18/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0401 - mean_absolute_error: 0.0401
19/19 [==============================] - 0s 2ms/step - loss: 0.0537 - mean_absolute_error: 0.0537 - val_loss: 0.0568 - val_mean_absolute_error: 0.0568
|
||||
Epoch 19/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0930 - mean_absolute_error: 0.0930
19/19 [==============================] - 0s 2ms/step - loss: 0.0534 - mean_absolute_error: 0.0534 - val_loss: 0.0523 - val_mean_absolute_error: 0.0523
|
||||
Epoch 20/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0631 - mean_absolute_error: 0.0631
19/19 [==============================] - 0s 2ms/step - loss: 0.0577 - mean_absolute_error: 0.0577 - val_loss: 0.0532 - val_mean_absolute_error: 0.0532
|
||||
Epoch 21/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0524 - mean_absolute_error: 0.0524
19/19 [==============================] - 0s 2ms/step - loss: 0.0538 - mean_absolute_error: 0.0538 - val_loss: 0.0540 - val_mean_absolute_error: 0.0540
|
||||
Epoch 22/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0435 - mean_absolute_error: 0.0435
19/19 [==============================] - 0s 2ms/step - loss: 0.0510 - mean_absolute_error: 0.0510 - val_loss: 0.0594 - val_mean_absolute_error: 0.0594
|
||||
Epoch 23/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0324 - mean_absolute_error: 0.0324
19/19 [==============================] - 0s 2ms/step - loss: 0.0573 - mean_absolute_error: 0.0573 - val_loss: 0.0537 - val_mean_absolute_error: 0.0537
|
||||
Epoch 24/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0354 - mean_absolute_error: 0.0354
19/19 [==============================] - 0s 2ms/step - loss: 0.0510 - mean_absolute_error: 0.0510 - val_loss: 0.0546 - val_mean_absolute_error: 0.0546
|
||||
Epoch 25/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0474 - mean_absolute_error: 0.0474
19/19 [==============================] - 0s 2ms/step - loss: 0.0539 - mean_absolute_error: 0.0539 - val_loss: 0.0525 - val_mean_absolute_error: 0.0525
|
||||
Epoch 26/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0928 - mean_absolute_error: 0.0928
19/19 [==============================] - 0s 2ms/step - loss: 0.0612 - mean_absolute_error: 0.0612 - val_loss: 0.0540 - val_mean_absolute_error: 0.0540
|
||||
Epoch 27/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0582 - mean_absolute_error: 0.0582
19/19 [==============================] - 0s 2ms/step - loss: 0.0535 - mean_absolute_error: 0.0535 - val_loss: 0.0548 - val_mean_absolute_error: 0.0548
|
||||
Epoch 28/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0415 - mean_absolute_error: 0.0415
19/19 [==============================] - 0s 2ms/step - loss: 0.0511 - mean_absolute_error: 0.0511 - val_loss: 0.0533 - val_mean_absolute_error: 0.0533
|
||||
Epoch 29/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0491 - mean_absolute_error: 0.0491
19/19 [==============================] - 0s 3ms/step - loss: 0.0532 - mean_absolute_error: 0.0532 - val_loss: 0.0528 - val_mean_absolute_error: 0.0528
|
||||
Epoch 30/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0475 - mean_absolute_error: 0.0475
19/19 [==============================] - 0s 2ms/step - loss: 0.0529 - mean_absolute_error: 0.0529 - val_loss: 0.0529 - val_mean_absolute_error: 0.0529
|
||||
views 1
|
||||
dtype: int32
|
||||
views 488
|
||||
dtype: int32
|
||||
likes 1
|
||||
dtype: int32
|
||||
likes 3345
|
||||
dtype: int32
|
||||
114882.99377127373
|
||||
114882.99377127373
|
||||
114882.99377127373
|
3
my_runs/1/info.json
Normal file
3
my_runs/1/info.json
Normal file
@ -0,0 +1,3 @@
|
||||
{
|
||||
"prepare_message_ts": "2021-05-20 21:59:18.264490"
|
||||
}
|
1
my_runs/1/metrics.json
Normal file
1
my_runs/1/metrics.json
Normal file
@ -0,0 +1 @@
|
||||
{}
|
87
my_runs/1/run.json
Normal file
87
my_runs/1/run.json
Normal file
@ -0,0 +1,87 @@
|
||||
{
|
||||
"artifacts": [],
|
||||
"command": "my_main",
|
||||
"experiment": {
|
||||
"base_dir": "C:\\Users\\karol\\PycharmProjects\\ium_434765",
|
||||
"dependencies": [
|
||||
"numpy==1.19.5",
|
||||
"pandas==1.2.4",
|
||||
"sacred==0.8.2",
|
||||
"tensorflow==2.5.0rc1"
|
||||
],
|
||||
"mainfile": "neural_network.py",
|
||||
"name": "sacred_scopes",
|
||||
"repositories": [
|
||||
{
|
||||
"commit": "07479089e2d0bd86c8b0dd3bb005f7178078cc34",
|
||||
"dirty": true,
|
||||
"url": "https://git.wmi.amu.edu.pl/s434765/ium_434765.git"
|
||||
},
|
||||
{
|
||||
"commit": "07479089e2d0bd86c8b0dd3bb005f7178078cc34",
|
||||
"dirty": true,
|
||||
"url": "https://git.wmi.amu.edu.pl/s434765/ium_434765.git"
|
||||
}
|
||||
],
|
||||
"sources": [
|
||||
[
|
||||
"evaluate_network.py",
|
||||
"_sources\\evaluate_network_6bc39a6cabbc78720ddbbd5b23f51cc3.py"
|
||||
],
|
||||
[
|
||||
"neural_network.py",
|
||||
"_sources\\neural_network_cdaa9eab635a60c87899a6eaac9e398e.py"
|
||||
]
|
||||
]
|
||||
},
|
||||
"heartbeat": "2021-05-20T19:59:22.263859",
|
||||
"host": {
|
||||
"ENV": {},
|
||||
"cpu": "Unknown",
|
||||
"gpus": {
|
||||
"driver_version": "452.06",
|
||||
"gpus": [
|
||||
{
|
||||
"model": "GeForce GTX 1650 Ti",
|
||||
"persistence_mode": false,
|
||||
"total_memory": 4096
|
||||
}
|
||||
]
|
||||
},
|
||||
"hostname": "DESKTOP-5PRPHO6",
|
||||
"os": [
|
||||
"Windows",
|
||||
"Windows-10-10.0.19041-SP0"
|
||||
],
|
||||
"python_version": "3.9.2"
|
||||
},
|
||||
"meta": {
|
||||
"command": "my_main",
|
||||
"options": {
|
||||
"--beat-interval": null,
|
||||
"--capture": null,
|
||||
"--comment": null,
|
||||
"--debug": false,
|
||||
"--enforce_clean": false,
|
||||
"--file_storage": null,
|
||||
"--force": false,
|
||||
"--help": false,
|
||||
"--loglevel": null,
|
||||
"--mongo_db": null,
|
||||
"--name": null,
|
||||
"--pdb": false,
|
||||
"--print-config": false,
|
||||
"--priority": null,
|
||||
"--queue": false,
|
||||
"--s3": null,
|
||||
"--sql": null,
|
||||
"--tiny_db": null,
|
||||
"--unobserved": false
|
||||
}
|
||||
},
|
||||
"resources": [],
|
||||
"result": null,
|
||||
"start_time": "2021-05-20T19:59:18.258489",
|
||||
"status": "COMPLETED",
|
||||
"stop_time": "2021-05-20T19:59:22.263859"
|
||||
}
|
4
my_runs/2/config.json
Normal file
4
my_runs/2/config.json
Normal file
@ -0,0 +1,4 @@
|
||||
{
|
||||
"epochs_amount": 30,
|
||||
"seed": 535480662
|
||||
}
|
78
my_runs/2/cout.txt
Normal file
78
my_runs/2/cout.txt
Normal file
@ -0,0 +1,78 @@
|
||||
views 0
|
||||
dtype: int32
|
||||
views 488
|
||||
dtype: int32
|
||||
likes 1
|
||||
dtype: int32
|
||||
likes 3345
|
||||
dtype: int32
|
||||
Epoch 1/30
|
||||
1/19 [>.............................] - ETA: 6s - loss: 0.1168 - mean_absolute_error: 0.1168
19/19 [==============================] - 1s 10ms/step - loss: 0.0788 - mean_absolute_error: 0.0788 - val_loss: 0.0639 - val_mean_absolute_error: 0.0639
|
||||
Epoch 2/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0699 - mean_absolute_error: 0.0699
19/19 [==============================] - 0s 2ms/step - loss: 0.0622 - mean_absolute_error: 0.0622 - val_loss: 0.0589 - val_mean_absolute_error: 0.0589
|
||||
Epoch 3/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0547 - mean_absolute_error: 0.0547
19/19 [==============================] - 0s 2ms/step - loss: 0.0566 - mean_absolute_error: 0.0566 - val_loss: 0.0542 - val_mean_absolute_error: 0.0542
|
||||
Epoch 4/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0351 - mean_absolute_error: 0.0351
19/19 [==============================] - 0s 2ms/step - loss: 0.0534 - mean_absolute_error: 0.0534 - val_loss: 0.0524 - val_mean_absolute_error: 0.0524
|
||||
Epoch 5/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0436 - mean_absolute_error: 0.0436
19/19 [==============================] - 0s 2ms/step - loss: 0.0562 - mean_absolute_error: 0.0562 - val_loss: 0.0560 - val_mean_absolute_error: 0.0560
|
||||
Epoch 6/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0474 - mean_absolute_error: 0.0474
19/19 [==============================] - 0s 2ms/step - loss: 0.0513 - mean_absolute_error: 0.0513 - val_loss: 0.0533 - val_mean_absolute_error: 0.0533
|
||||
Epoch 7/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0714 - mean_absolute_error: 0.0714
19/19 [==============================] - 0s 2ms/step - loss: 0.0562 - mean_absolute_error: 0.0562 - val_loss: 0.0519 - val_mean_absolute_error: 0.0519
|
||||
Epoch 8/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0567 - mean_absolute_error: 0.0567
19/19 [==============================] - 0s 2ms/step - loss: 0.0535 - mean_absolute_error: 0.0535 - val_loss: 0.0526 - val_mean_absolute_error: 0.0526
|
||||
Epoch 9/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0472 - mean_absolute_error: 0.0472
19/19 [==============================] - 0s 2ms/step - loss: 0.0571 - mean_absolute_error: 0.0571 - val_loss: 0.0559 - val_mean_absolute_error: 0.0559
|
||||
Epoch 10/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0634 - mean_absolute_error: 0.0634
19/19 [==============================] - 0s 2ms/step - loss: 0.0528 - mean_absolute_error: 0.0528 - val_loss: 0.0527 - val_mean_absolute_error: 0.0527
|
||||
Epoch 11/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0412 - mean_absolute_error: 0.0412
19/19 [==============================] - 0s 2ms/step - loss: 0.0529 - mean_absolute_error: 0.0529 - val_loss: 0.0542 - val_mean_absolute_error: 0.0542
|
||||
Epoch 12/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0390 - mean_absolute_error: 0.0390
19/19 [==============================] - 0s 2ms/step - loss: 0.0496 - mean_absolute_error: 0.0496 - val_loss: 0.0596 - val_mean_absolute_error: 0.0596
|
||||
Epoch 13/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0625 - mean_absolute_error: 0.0625
19/19 [==============================] - 0s 2ms/step - loss: 0.0545 - mean_absolute_error: 0.0545 - val_loss: 0.0560 - val_mean_absolute_error: 0.0560
|
||||
Epoch 14/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0206 - mean_absolute_error: 0.0206
19/19 [==============================] - 0s 2ms/step - loss: 0.0542 - mean_absolute_error: 0.0542 - val_loss: 0.0542 - val_mean_absolute_error: 0.0542
|
||||
Epoch 15/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0311 - mean_absolute_error: 0.0311
19/19 [==============================] - 0s 3ms/step - loss: 0.0486 - mean_absolute_error: 0.0486 - val_loss: 0.0527 - val_mean_absolute_error: 0.0527
|
||||
Epoch 16/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0270 - mean_absolute_error: 0.0270
19/19 [==============================] - 0s 2ms/step - loss: 0.0477 - mean_absolute_error: 0.0477 - val_loss: 0.0558 - val_mean_absolute_error: 0.0558
|
||||
Epoch 17/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0808 - mean_absolute_error: 0.0808
19/19 [==============================] - 0s 2ms/step - loss: 0.0563 - mean_absolute_error: 0.0563 - val_loss: 0.0546 - val_mean_absolute_error: 0.0546
|
||||
Epoch 18/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0433 - mean_absolute_error: 0.0433
19/19 [==============================] - 0s 2ms/step - loss: 0.0499 - mean_absolute_error: 0.0499 - val_loss: 0.0551 - val_mean_absolute_error: 0.0551
|
||||
Epoch 19/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0431 - mean_absolute_error: 0.0431
19/19 [==============================] - 0s 2ms/step - loss: 0.0524 - mean_absolute_error: 0.0524 - val_loss: 0.0530 - val_mean_absolute_error: 0.0530
|
||||
Epoch 20/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0298 - mean_absolute_error: 0.0298
19/19 [==============================] - 0s 2ms/step - loss: 0.0490 - mean_absolute_error: 0.0490 - val_loss: 0.0517 - val_mean_absolute_error: 0.0517
|
||||
Epoch 21/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0499 - mean_absolute_error: 0.0499
19/19 [==============================] - 0s 2ms/step - loss: 0.0555 - mean_absolute_error: 0.0555 - val_loss: 0.0557 - val_mean_absolute_error: 0.0557
|
||||
Epoch 22/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0401 - mean_absolute_error: 0.0401
19/19 [==============================] - 0s 2ms/step - loss: 0.0524 - mean_absolute_error: 0.0524 - val_loss: 0.0602 - val_mean_absolute_error: 0.0602
|
||||
Epoch 23/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0652 - mean_absolute_error: 0.0652
19/19 [==============================] - 0s 2ms/step - loss: 0.0596 - mean_absolute_error: 0.0596 - val_loss: 0.0567 - val_mean_absolute_error: 0.0567
|
||||
Epoch 24/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0275 - mean_absolute_error: 0.0275
19/19 [==============================] - 0s 2ms/step - loss: 0.0562 - mean_absolute_error: 0.0562 - val_loss: 0.0531 - val_mean_absolute_error: 0.0531
|
||||
Epoch 25/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0602 - mean_absolute_error: 0.0602
19/19 [==============================] - 0s 2ms/step - loss: 0.0576 - mean_absolute_error: 0.0576 - val_loss: 0.0540 - val_mean_absolute_error: 0.0540
|
||||
Epoch 26/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0388 - mean_absolute_error: 0.0388
19/19 [==============================] - 0s 2ms/step - loss: 0.0542 - mean_absolute_error: 0.0542 - val_loss: 0.0555 - val_mean_absolute_error: 0.0555
|
||||
Epoch 27/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0711 - mean_absolute_error: 0.0711
19/19 [==============================] - 0s 2ms/step - loss: 0.0560 - mean_absolute_error: 0.0560 - val_loss: 0.0538 - val_mean_absolute_error: 0.0538
|
||||
Epoch 28/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0875 - mean_absolute_error: 0.0875
19/19 [==============================] - 0s 2ms/step - loss: 0.0614 - mean_absolute_error: 0.0614 - val_loss: 0.0535 - val_mean_absolute_error: 0.0535
|
||||
Epoch 29/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0462 - mean_absolute_error: 0.0462
19/19 [==============================] - 0s 2ms/step - loss: 0.0544 - mean_absolute_error: 0.0544 - val_loss: 0.0562 - val_mean_absolute_error: 0.0562
|
||||
Epoch 30/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0588 - mean_absolute_error: 0.0588
19/19 [==============================] - 0s 2ms/step - loss: 0.0582 - mean_absolute_error: 0.0582 - val_loss: 0.0593 - val_mean_absolute_error: 0.0593
|
||||
views 1
|
||||
dtype: int32
|
||||
views 488
|
||||
dtype: int32
|
||||
likes 1
|
||||
dtype: int32
|
||||
likes 3345
|
||||
dtype: int32
|
||||
129787.96004765884
|
||||
129787.96004765884
|
3
my_runs/2/info.json
Normal file
3
my_runs/2/info.json
Normal file
@ -0,0 +1,3 @@
|
||||
{
|
||||
"prepare_message_ts": "2021-05-20 22:01:49.105722"
|
||||
}
|
13
my_runs/2/metrics.json
Normal file
13
my_runs/2/metrics.json
Normal file
@ -0,0 +1,13 @@
|
||||
{
|
||||
"training.metrics": {
|
||||
"steps": [
|
||||
0
|
||||
],
|
||||
"timestamps": [
|
||||
"2021-05-20T20:01:53.071700"
|
||||
],
|
||||
"values": [
|
||||
129787.96004765884
|
||||
]
|
||||
}
|
||||
}
|
87
my_runs/2/run.json
Normal file
87
my_runs/2/run.json
Normal file
@ -0,0 +1,87 @@
|
||||
{
|
||||
"artifacts": [],
|
||||
"command": "my_main",
|
||||
"experiment": {
|
||||
"base_dir": "C:\\Users\\karol\\PycharmProjects\\ium_434765",
|
||||
"dependencies": [
|
||||
"numpy==1.19.5",
|
||||
"pandas==1.2.4",
|
||||
"sacred==0.8.2",
|
||||
"tensorflow==2.5.0rc1"
|
||||
],
|
||||
"mainfile": "neural_network.py",
|
||||
"name": "sacred_scopes",
|
||||
"repositories": [
|
||||
{
|
||||
"commit": "07479089e2d0bd86c8b0dd3bb005f7178078cc34",
|
||||
"dirty": true,
|
||||
"url": "https://git.wmi.amu.edu.pl/s434765/ium_434765.git"
|
||||
},
|
||||
{
|
||||
"commit": "07479089e2d0bd86c8b0dd3bb005f7178078cc34",
|
||||
"dirty": true,
|
||||
"url": "https://git.wmi.amu.edu.pl/s434765/ium_434765.git"
|
||||
}
|
||||
],
|
||||
"sources": [
|
||||
[
|
||||
"evaluate_network.py",
|
||||
"_sources\\evaluate_network_6bc39a6cabbc78720ddbbd5b23f51cc3.py"
|
||||
],
|
||||
[
|
||||
"neural_network.py",
|
||||
"_sources\\neural_network_eca667942d0304c50d970a67f9012302.py"
|
||||
]
|
||||
]
|
||||
},
|
||||
"heartbeat": "2021-05-20T20:01:53.071700",
|
||||
"host": {
|
||||
"ENV": {},
|
||||
"cpu": "Unknown",
|
||||
"gpus": {
|
||||
"driver_version": "452.06",
|
||||
"gpus": [
|
||||
{
|
||||
"model": "GeForce GTX 1650 Ti",
|
||||
"persistence_mode": false,
|
||||
"total_memory": 4096
|
||||
}
|
||||
]
|
||||
},
|
||||
"hostname": "DESKTOP-5PRPHO6",
|
||||
"os": [
|
||||
"Windows",
|
||||
"Windows-10-10.0.19041-SP0"
|
||||
],
|
||||
"python_version": "3.9.2"
|
||||
},
|
||||
"meta": {
|
||||
"command": "my_main",
|
||||
"options": {
|
||||
"--beat-interval": null,
|
||||
"--capture": null,
|
||||
"--comment": null,
|
||||
"--debug": false,
|
||||
"--enforce_clean": false,
|
||||
"--file_storage": null,
|
||||
"--force": false,
|
||||
"--help": false,
|
||||
"--loglevel": null,
|
||||
"--mongo_db": null,
|
||||
"--name": null,
|
||||
"--pdb": false,
|
||||
"--print-config": false,
|
||||
"--priority": null,
|
||||
"--queue": false,
|
||||
"--s3": null,
|
||||
"--sql": null,
|
||||
"--tiny_db": null,
|
||||
"--unobserved": false
|
||||
}
|
||||
},
|
||||
"resources": [],
|
||||
"result": null,
|
||||
"start_time": "2021-05-20T20:01:49.099728",
|
||||
"status": "COMPLETED",
|
||||
"stop_time": "2021-05-20T20:01:53.071700"
|
||||
}
|
4
my_runs/3/config.json
Normal file
4
my_runs/3/config.json
Normal file
@ -0,0 +1,4 @@
|
||||
{
|
||||
"epochs_amount": 30,
|
||||
"seed": 981983024
|
||||
}
|
78
my_runs/3/cout.txt
Normal file
78
my_runs/3/cout.txt
Normal file
@ -0,0 +1,78 @@
|
||||
views 0
|
||||
dtype: int32
|
||||
views 488
|
||||
dtype: int32
|
||||
likes 1
|
||||
dtype: int32
|
||||
likes 3345
|
||||
dtype: int32
|
||||
Epoch 1/30
|
||||
1/19 [>.............................] - ETA: 7s - loss: 0.1234 - mean_absolute_error: 0.1234
19/19 [==============================] - 1s 10ms/step - loss: 0.0687 - mean_absolute_error: 0.0687 - val_loss: 0.0587 - val_mean_absolute_error: 0.0587
|
||||
Epoch 2/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0764 - mean_absolute_error: 0.0764
19/19 [==============================] - 0s 2ms/step - loss: 0.0583 - mean_absolute_error: 0.0583 - val_loss: 0.0541 - val_mean_absolute_error: 0.0541
|
||||
Epoch 3/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0781 - mean_absolute_error: 0.0781
19/19 [==============================] - 0s 2ms/step - loss: 0.0595 - mean_absolute_error: 0.0595 - val_loss: 0.0572 - val_mean_absolute_error: 0.0572
|
||||
Epoch 4/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0564 - mean_absolute_error: 0.0564
19/19 [==============================] - 0s 2ms/step - loss: 0.0592 - mean_absolute_error: 0.0592 - val_loss: 0.0541 - val_mean_absolute_error: 0.0541
|
||||
Epoch 5/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0608 - mean_absolute_error: 0.0608
19/19 [==============================] - 0s 2ms/step - loss: 0.0552 - mean_absolute_error: 0.0552 - val_loss: 0.0524 - val_mean_absolute_error: 0.0524
|
||||
Epoch 6/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0346 - mean_absolute_error: 0.0346
19/19 [==============================] - 0s 2ms/step - loss: 0.0510 - mean_absolute_error: 0.0510 - val_loss: 0.0544 - val_mean_absolute_error: 0.0544
|
||||
Epoch 7/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0569 - mean_absolute_error: 0.0569
19/19 [==============================] - 0s 2ms/step - loss: 0.0570 - mean_absolute_error: 0.0570 - val_loss: 0.0521 - val_mean_absolute_error: 0.0521
|
||||
Epoch 8/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0565 - mean_absolute_error: 0.0565
19/19 [==============================] - 0s 2ms/step - loss: 0.0558 - mean_absolute_error: 0.0558 - val_loss: 0.0542 - val_mean_absolute_error: 0.0542
|
||||
Epoch 9/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0829 - mean_absolute_error: 0.0829
19/19 [==============================] - 0s 2ms/step - loss: 0.0563 - mean_absolute_error: 0.0563 - val_loss: 0.0535 - val_mean_absolute_error: 0.0535
|
||||
Epoch 10/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0298 - mean_absolute_error: 0.0298
19/19 [==============================] - 0s 2ms/step - loss: 0.0509 - mean_absolute_error: 0.0509 - val_loss: 0.0520 - val_mean_absolute_error: 0.0520
|
||||
Epoch 11/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0376 - mean_absolute_error: 0.0376
19/19 [==============================] - 0s 2ms/step - loss: 0.0546 - mean_absolute_error: 0.0546 - val_loss: 0.0557 - val_mean_absolute_error: 0.0557
|
||||
Epoch 12/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0577 - mean_absolute_error: 0.0577
19/19 [==============================] - 0s 2ms/step - loss: 0.0567 - mean_absolute_error: 0.0567 - val_loss: 0.0521 - val_mean_absolute_error: 0.0521
|
||||
Epoch 13/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0537 - mean_absolute_error: 0.0537
19/19 [==============================] - 0s 2ms/step - loss: 0.0552 - mean_absolute_error: 0.0552 - val_loss: 0.0556 - val_mean_absolute_error: 0.0556
|
||||
Epoch 14/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0696 - mean_absolute_error: 0.0696
19/19 [==============================] - 0s 2ms/step - loss: 0.0616 - mean_absolute_error: 0.0616 - val_loss: 0.0571 - val_mean_absolute_error: 0.0571
|
||||
Epoch 15/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0726 - mean_absolute_error: 0.0726
19/19 [==============================] - 0s 2ms/step - loss: 0.0556 - mean_absolute_error: 0.0556 - val_loss: 0.0531 - val_mean_absolute_error: 0.0531
|
||||
Epoch 16/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0448 - mean_absolute_error: 0.0448
19/19 [==============================] - 0s 2ms/step - loss: 0.0533 - mean_absolute_error: 0.0533 - val_loss: 0.0562 - val_mean_absolute_error: 0.0562
|
||||
Epoch 17/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0458 - mean_absolute_error: 0.0458
19/19 [==============================] - 0s 2ms/step - loss: 0.0553 - mean_absolute_error: 0.0553 - val_loss: 0.0558 - val_mean_absolute_error: 0.0558
|
||||
Epoch 18/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0547 - mean_absolute_error: 0.0547
19/19 [==============================] - 0s 2ms/step - loss: 0.0590 - mean_absolute_error: 0.0590 - val_loss: 0.0561 - val_mean_absolute_error: 0.0561
|
||||
Epoch 19/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0402 - mean_absolute_error: 0.0402
19/19 [==============================] - 0s 2ms/step - loss: 0.0579 - mean_absolute_error: 0.0579 - val_loss: 0.0554 - val_mean_absolute_error: 0.0554
|
||||
Epoch 20/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0614 - mean_absolute_error: 0.0614
19/19 [==============================] - 0s 2ms/step - loss: 0.0558 - mean_absolute_error: 0.0558 - val_loss: 0.0539 - val_mean_absolute_error: 0.0539
|
||||
Epoch 21/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0492 - mean_absolute_error: 0.0492
19/19 [==============================] - 0s 2ms/step - loss: 0.0525 - mean_absolute_error: 0.0525 - val_loss: 0.0540 - val_mean_absolute_error: 0.0540
|
||||
Epoch 22/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0554 - mean_absolute_error: 0.0554
19/19 [==============================] - 0s 2ms/step - loss: 0.0595 - mean_absolute_error: 0.0595 - val_loss: 0.0533 - val_mean_absolute_error: 0.0533
|
||||
Epoch 23/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0664 - mean_absolute_error: 0.0664
19/19 [==============================] - 0s 2ms/step - loss: 0.0533 - mean_absolute_error: 0.0533 - val_loss: 0.0518 - val_mean_absolute_error: 0.0518
|
||||
Epoch 24/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0282 - mean_absolute_error: 0.0282
19/19 [==============================] - 0s 2ms/step - loss: 0.0471 - mean_absolute_error: 0.0471 - val_loss: 0.0517 - val_mean_absolute_error: 0.0517
|
||||
Epoch 25/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0456 - mean_absolute_error: 0.0456
19/19 [==============================] - 0s 2ms/step - loss: 0.0473 - mean_absolute_error: 0.0473 - val_loss: 0.0536 - val_mean_absolute_error: 0.0536
|
||||
Epoch 26/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0668 - mean_absolute_error: 0.0668
19/19 [==============================] - 0s 2ms/step - loss: 0.0571 - mean_absolute_error: 0.0571 - val_loss: 0.0532 - val_mean_absolute_error: 0.0532
|
||||
Epoch 27/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0602 - mean_absolute_error: 0.0602
19/19 [==============================] - 0s 2ms/step - loss: 0.0558 - mean_absolute_error: 0.0558 - val_loss: 0.0520 - val_mean_absolute_error: 0.0520
|
||||
Epoch 28/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0631 - mean_absolute_error: 0.0631
19/19 [==============================] - 0s 2ms/step - loss: 0.0557 - mean_absolute_error: 0.0557 - val_loss: 0.0528 - val_mean_absolute_error: 0.0528
|
||||
Epoch 29/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0601 - mean_absolute_error: 0.0601
19/19 [==============================] - 0s 2ms/step - loss: 0.0526 - mean_absolute_error: 0.0526 - val_loss: 0.0521 - val_mean_absolute_error: 0.0521
|
||||
Epoch 30/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0508 - mean_absolute_error: 0.0508
19/19 [==============================] - 0s 2ms/step - loss: 0.0542 - mean_absolute_error: 0.0542 - val_loss: 0.0534 - val_mean_absolute_error: 0.0534
|
||||
views 1
|
||||
dtype: int32
|
||||
views 488
|
||||
dtype: int32
|
||||
likes 1
|
||||
dtype: int32
|
||||
likes 3345
|
||||
dtype: int32
|
||||
114831.63920784603
|
||||
114831.63920784603
|
3
my_runs/3/info.json
Normal file
3
my_runs/3/info.json
Normal file
@ -0,0 +1,3 @@
|
||||
{
|
||||
"prepare_message_ts": "2021-05-20 22:06:00.289863"
|
||||
}
|
13
my_runs/3/metrics.json
Normal file
13
my_runs/3/metrics.json
Normal file
@ -0,0 +1,13 @@
|
||||
{
|
||||
"training.metrics": {
|
||||
"steps": [
|
||||
0
|
||||
],
|
||||
"timestamps": [
|
||||
"2021-05-20T20:06:03.338305"
|
||||
],
|
||||
"values": [
|
||||
114831.63920784603
|
||||
]
|
||||
}
|
||||
}
|
79
my_runs/3/run.json
Normal file
79
my_runs/3/run.json
Normal file
@ -0,0 +1,79 @@
|
||||
{
|
||||
"artifacts": [],
|
||||
"command": "my_main",
|
||||
"experiment": {
|
||||
"base_dir": "C:\\Users\\karol\\PycharmProjects\\ium_434765",
|
||||
"dependencies": [
|
||||
"numpy==1.19.5",
|
||||
"pandas==1.2.4",
|
||||
"sacred==0.8.2",
|
||||
"scikit-learn==0.24.1",
|
||||
"tensorflow==2.5.0rc1"
|
||||
],
|
||||
"mainfile": "neural_network.py",
|
||||
"name": "sacred_scopes",
|
||||
"repositories": [
|
||||
{
|
||||
"commit": "b0346d0b62846839e512344b20a566135e07a4b2",
|
||||
"dirty": true,
|
||||
"url": "https://git.wmi.amu.edu.pl/s434765/ium_434765.git"
|
||||
}
|
||||
],
|
||||
"sources": [
|
||||
[
|
||||
"neural_network.py",
|
||||
"_sources\\neural_network_33e5177d0655bf5fef22fcd226db36b1.py"
|
||||
]
|
||||
]
|
||||
},
|
||||
"heartbeat": "2021-05-20T20:06:03.339305",
|
||||
"host": {
|
||||
"ENV": {},
|
||||
"cpu": "Unknown",
|
||||
"gpus": {
|
||||
"driver_version": "452.06",
|
||||
"gpus": [
|
||||
{
|
||||
"model": "GeForce GTX 1650 Ti",
|
||||
"persistence_mode": false,
|
||||
"total_memory": 4096
|
||||
}
|
||||
]
|
||||
},
|
||||
"hostname": "DESKTOP-5PRPHO6",
|
||||
"os": [
|
||||
"Windows",
|
||||
"Windows-10-10.0.19041-SP0"
|
||||
],
|
||||
"python_version": "3.9.2"
|
||||
},
|
||||
"meta": {
|
||||
"command": "my_main",
|
||||
"options": {
|
||||
"--beat-interval": null,
|
||||
"--capture": null,
|
||||
"--comment": null,
|
||||
"--debug": false,
|
||||
"--enforce_clean": false,
|
||||
"--file_storage": null,
|
||||
"--force": false,
|
||||
"--help": false,
|
||||
"--loglevel": null,
|
||||
"--mongo_db": null,
|
||||
"--name": null,
|
||||
"--pdb": false,
|
||||
"--print-config": false,
|
||||
"--priority": null,
|
||||
"--queue": false,
|
||||
"--s3": null,
|
||||
"--sql": null,
|
||||
"--tiny_db": null,
|
||||
"--unobserved": false
|
||||
}
|
||||
},
|
||||
"resources": [],
|
||||
"result": null,
|
||||
"start_time": "2021-05-20T20:06:00.285864",
|
||||
"status": "COMPLETED",
|
||||
"stop_time": "2021-05-20T20:06:03.339305"
|
||||
}
|
@ -0,0 +1,53 @@
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
from sklearn.metrics import mean_squared_error
|
||||
from tensorflow import keras
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
|
||||
def evaluate_model():
|
||||
model = keras.models.load_model('model')
|
||||
data = pd.read_csv("data_dev", sep=',', error_bad_lines=False,
|
||||
skip_blank_lines=True, nrows=527, names=["video_id", "last_trending_date",
|
||||
"publish_date", "publish_hour", "category_id",
|
||||
"channel_title", "views", "likes", "dislikes",
|
||||
"comment_count"]).dropna()
|
||||
X_test = data.loc[:, data.columns == "views"].astype(int)
|
||||
y_test = data.loc[:, data.columns == "likes"].astype(int)
|
||||
|
||||
min_val_sub = np.min(X_test)
|
||||
max_val_sub = np.max(X_test)
|
||||
X_test = (X_test - min_val_sub) / (max_val_sub - min_val_sub)
|
||||
print(min_val_sub)
|
||||
print(max_val_sub)
|
||||
|
||||
min_val_like = np.min(y_test)
|
||||
max_val_like = np.max(y_test)
|
||||
print(min_val_like)
|
||||
print(max_val_like)
|
||||
|
||||
prediction = model.predict(X_test)
|
||||
|
||||
prediction_denormalized = []
|
||||
for pred in prediction:
|
||||
denorm = pred[0] * (max_val_like[0] - min_val_like[0]) + min_val_like[0]
|
||||
prediction_denormalized.append(denorm)
|
||||
|
||||
f = open("predictions.txt", "w")
|
||||
for (pred, test) in zip(prediction_denormalized, y_test.values):
|
||||
f.write("predicted: %s expected: %s\n" % (str(pred), str(test[0])))
|
||||
|
||||
error = mean_squared_error(y_test, prediction_denormalized)
|
||||
print(error)
|
||||
|
||||
with open("rmse.txt", "a") as file:
|
||||
file.write(str(error) + "\n")
|
||||
|
||||
with open("rmse.txt", "r") as file:
|
||||
lines = file.readlines()
|
||||
plt.plot(range(len(lines)), [line[:-2] for line in lines])
|
||||
plt.tight_layout()
|
||||
plt.ylabel('RMSE')
|
||||
plt.xlabel('evaluation no')
|
||||
plt.savefig('evaluation.png')
|
||||
return error
|
@ -0,0 +1,108 @@
|
||||
from datetime import datetime
|
||||
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
from sacred.observers import FileStorageObserver, MongoObserver
|
||||
from sacred import Experiment
|
||||
from sklearn.metrics import mean_squared_error
|
||||
|
||||
from tensorflow import keras
|
||||
|
||||
ex = Experiment("sacred_scopes", interactive=True)
|
||||
# ex.observers.append(MongoObserver(url='mongodb://mongo_user:mongo_password_IUM_2021@172.17.0.1:27017',
|
||||
# db_name='sacred'))
|
||||
ex.observers.append(FileStorageObserver('my_runs'))
|
||||
|
||||
|
||||
@ex.config
|
||||
def my_config():
|
||||
epochs_amount = 30
|
||||
|
||||
|
||||
def normalize_data(data):
|
||||
return (data - np.min(data)) / (np.max(data) - np.min(data))
|
||||
|
||||
|
||||
@ex.capture
|
||||
def prepare_model(epochs_amount, _run):
|
||||
_run.info["prepare_message_ts"] = str(datetime.now())
|
||||
|
||||
data = pd.read_csv("data_train", sep=',', skip_blank_lines=True, nrows=1087, error_bad_lines=False,
|
||||
names=["vipip install sacreddeo_id", "last_trending_date", "publish_date", "publish_hour",
|
||||
"category_id",
|
||||
"channel_title", "views", "likes", "dislikes", "comment_count"]).dropna()
|
||||
|
||||
X = data.loc[:, data.columns == "views"].astype(int)
|
||||
y = data.loc[:, data.columns == "likes"].astype(int)
|
||||
|
||||
min_val_sub = np.min(X)
|
||||
max_val_sub = np.max(X)
|
||||
X = (X - min_val_sub) / (max_val_sub - min_val_sub)
|
||||
print(min_val_sub)
|
||||
print(max_val_sub)
|
||||
|
||||
min_val_like = np.min(y)
|
||||
max_val_like = np.max(y)
|
||||
y = (y - min_val_like) / (max_val_like - min_val_like)
|
||||
|
||||
print(min_val_like)
|
||||
print(max_val_like)
|
||||
|
||||
model = keras.Sequential([
|
||||
keras.layers.Dense(512, input_dim=X.shape[1], activation='relu'),
|
||||
keras.layers.Dense(256, activation='relu'),
|
||||
keras.layers.Dense(256, activation='relu'),
|
||||
keras.layers.Dense(128, activation='relu'),
|
||||
keras.layers.Dense(1, activation='linear'),
|
||||
])
|
||||
|
||||
model.compile(loss='mean_absolute_error', optimizer="Adam", metrics=['mean_absolute_error'])
|
||||
|
||||
model.fit(X, y, epochs=int(epochs_amount), validation_split=0.3)
|
||||
|
||||
data = pd.read_csv("data_dev", sep=',', error_bad_lines=False,
|
||||
skip_blank_lines=True, nrows=527, names=["video_id", "last_trending_date",
|
||||
"publish_date", "publish_hour", "category_id",
|
||||
"channel_title", "views", "likes", "dislikes",
|
||||
"comment_count"]).dropna()
|
||||
X_test = data.loc[:, data.columns == "views"].astype(int)
|
||||
y_test = data.loc[:, data.columns == "likes"].astype(int)
|
||||
|
||||
min_val_sub = np.min(X_test)
|
||||
max_val_sub = np.max(X_test)
|
||||
X_test = (X_test - min_val_sub) / (max_val_sub - min_val_sub)
|
||||
print(min_val_sub)
|
||||
print(max_val_sub)
|
||||
|
||||
min_val_like = np.min(y_test)
|
||||
max_val_like = np.max(y_test)
|
||||
print(min_val_like)
|
||||
print(max_val_like)
|
||||
|
||||
prediction = model.predict(X_test)
|
||||
|
||||
prediction_denormalized = []
|
||||
for pred in prediction:
|
||||
denorm = pred[0] * (max_val_like[0] - min_val_like[0]) + min_val_like[0]
|
||||
prediction_denormalized.append(denorm)
|
||||
|
||||
f = open("predictions.txt", "w")
|
||||
for (pred, test) in zip(prediction_denormalized, y_test.values):
|
||||
f.write("predicted: %s expected: %s\n" % (str(pred), str(test[0])))
|
||||
|
||||
error = mean_squared_error(y_test, prediction_denormalized)
|
||||
print(error)
|
||||
|
||||
model.save('model')
|
||||
|
||||
_run.log_scalar("training.metrics", error)
|
||||
return error
|
||||
|
||||
|
||||
@ex.main
|
||||
def my_main(epochs_amount):
|
||||
print(prepare_model())
|
||||
|
||||
|
||||
ex.run()
|
||||
ex.add_artifact("model.pb")
|
@ -0,0 +1,79 @@
|
||||
from datetime import datetime
|
||||
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
from sacred.observers import FileStorageObserver, MongoObserver
|
||||
from sacred import Experiment
|
||||
|
||||
from tensorflow import keras
|
||||
import sys
|
||||
|
||||
from evaluate_network import evaluate_model
|
||||
|
||||
ex = Experiment("sacred_scopes", interactive=True)
|
||||
# ex.observers.append(MongoObserver(url='mongodb://mongo_user:mongo_password_IUM_2021@172.17.0.1:27017',
|
||||
# db_name='sacred'))
|
||||
ex.observers.append(FileStorageObserver('my_runs'))
|
||||
|
||||
|
||||
@ex.config
|
||||
def my_config():
|
||||
epochs_amount = 30
|
||||
|
||||
|
||||
def normalize_data(data):
|
||||
return (data - np.min(data)) / (np.max(data) - np.min(data))
|
||||
|
||||
|
||||
@ex.capture
|
||||
def prepare_model(epochs_amount, _run):
|
||||
_run.info["prepare_message_ts"] = str(datetime.now())
|
||||
|
||||
data = pd.read_csv("data_train", sep=',', skip_blank_lines=True, nrows=1087, error_bad_lines=False,
|
||||
names=["vipip install sacreddeo_id", "last_trending_date", "publish_date", "publish_hour",
|
||||
"category_id",
|
||||
"channel_title", "views", "likes", "dislikes", "comment_count"]).dropna()
|
||||
|
||||
X = data.loc[:, data.columns == "views"].astype(int)
|
||||
y = data.loc[:, data.columns == "likes"].astype(int)
|
||||
|
||||
min_val_sub = np.min(X)
|
||||
max_val_sub = np.max(X)
|
||||
X = (X - min_val_sub) / (max_val_sub - min_val_sub)
|
||||
print(min_val_sub)
|
||||
print(max_val_sub)
|
||||
|
||||
min_val_like = np.min(y)
|
||||
max_val_like = np.max(y)
|
||||
y = (y - min_val_like) / (max_val_like - min_val_like)
|
||||
|
||||
print(min_val_like)
|
||||
print(max_val_like)
|
||||
|
||||
model = keras.Sequential([
|
||||
keras.layers.Dense(512, input_dim=X.shape[1], activation='relu'),
|
||||
keras.layers.Dense(256, activation='relu'),
|
||||
keras.layers.Dense(256, activation='relu'),
|
||||
keras.layers.Dense(128, activation='relu'),
|
||||
keras.layers.Dense(1, activation='linear'),
|
||||
])
|
||||
|
||||
model.compile(loss='mean_absolute_error', optimizer="Adam", metrics=['mean_absolute_error'])
|
||||
|
||||
model.fit(X, y, epochs=int(epochs_amount), validation_split=0.3)
|
||||
|
||||
model.save('model')
|
||||
|
||||
metrics = evaluate_model()
|
||||
print(metrics)
|
||||
|
||||
return metrics
|
||||
|
||||
|
||||
@ex.main
|
||||
def my_main(epochs_amount):
|
||||
print(prepare_model())
|
||||
|
||||
|
||||
ex.run()
|
||||
ex.add_artifact("model.pb")
|
@ -0,0 +1,78 @@
|
||||
from datetime import datetime
|
||||
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
from sacred.observers import FileStorageObserver, MongoObserver
|
||||
from sacred import Experiment
|
||||
|
||||
from tensorflow import keras
|
||||
import sys
|
||||
|
||||
from evaluate_network import evaluate_model
|
||||
|
||||
ex = Experiment("sacred_scopes", interactive=True)
|
||||
# ex.observers.append(MongoObserver(url='mongodb://mongo_user:mongo_password_IUM_2021@172.17.0.1:27017',
|
||||
# db_name='sacred'))
|
||||
ex.observers.append(FileStorageObserver('my_runs'))
|
||||
|
||||
|
||||
@ex.config
|
||||
def my_config():
|
||||
epochs_amount = 30
|
||||
|
||||
|
||||
def normalize_data(data):
|
||||
return (data - np.min(data)) / (np.max(data) - np.min(data))
|
||||
|
||||
|
||||
@ex.capture
|
||||
def prepare_model(epochs_amount, _run):
|
||||
_run.info["prepare_message_ts"] = str(datetime.now())
|
||||
|
||||
data = pd.read_csv("data_train", sep=',', skip_blank_lines=True, nrows=1087, error_bad_lines=False,
|
||||
names=["vipip install sacreddeo_id", "last_trending_date", "publish_date", "publish_hour",
|
||||
"category_id",
|
||||
"channel_title", "views", "likes", "dislikes", "comment_count"]).dropna()
|
||||
|
||||
X = data.loc[:, data.columns == "views"].astype(int)
|
||||
y = data.loc[:, data.columns == "likes"].astype(int)
|
||||
|
||||
min_val_sub = np.min(X)
|
||||
max_val_sub = np.max(X)
|
||||
X = (X - min_val_sub) / (max_val_sub - min_val_sub)
|
||||
print(min_val_sub)
|
||||
print(max_val_sub)
|
||||
|
||||
min_val_like = np.min(y)
|
||||
max_val_like = np.max(y)
|
||||
y = (y - min_val_like) / (max_val_like - min_val_like)
|
||||
|
||||
print(min_val_like)
|
||||
print(max_val_like)
|
||||
|
||||
model = keras.Sequential([
|
||||
keras.layers.Dense(512, input_dim=X.shape[1], activation='relu'),
|
||||
keras.layers.Dense(256, activation='relu'),
|
||||
keras.layers.Dense(256, activation='relu'),
|
||||
keras.layers.Dense(128, activation='relu'),
|
||||
keras.layers.Dense(1, activation='linear'),
|
||||
])
|
||||
|
||||
model.compile(loss='mean_absolute_error', optimizer="Adam", metrics=['mean_absolute_error'])
|
||||
|
||||
model.fit(X, y, epochs=int(epochs_amount), validation_split=0.3)
|
||||
|
||||
model.save('model')
|
||||
|
||||
metrics = evaluate_model()
|
||||
_run.log_scalar("training.metrics", metrics)
|
||||
return metrics
|
||||
|
||||
|
||||
@ex.main
|
||||
def my_main(epochs_amount):
|
||||
print(prepare_model())
|
||||
|
||||
|
||||
ex.run()
|
||||
ex.add_artifact("model.pb")
|
@ -1,94 +1,108 @@
|
||||
from datetime import datetime
|
||||
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
from sacred.observers import FileStorageObserver, MongoObserver
|
||||
from sacred import Experiment
|
||||
from sklearn.metrics import mean_squared_error
|
||||
|
||||
from tensorflow import keras
|
||||
import sys
|
||||
|
||||
ex = Experiment("sacred_scopes", interactive=True)
|
||||
ex.observers.append(MongoObserver(url='mongodb://mongo_user:mongo_password_IUM_2021@172.17.0.1:27017',
|
||||
db_name='sacred'))
|
||||
ex.observers.append(FileStorageObserver('my_runs'))
|
||||
|
||||
|
||||
@ex.config
|
||||
def my_config():
|
||||
epochs_amount = 30
|
||||
|
||||
|
||||
def normalize_data(data):
|
||||
return (data - np.min(data)) / (np.max(data) - np.min(data))
|
||||
|
||||
|
||||
data = pd.read_csv("data_train", sep=',', skip_blank_lines=True, nrows=1087, error_bad_lines=False,
|
||||
names=["video_id", "last_trending_date", "publish_date", "publish_hour", "category_id",
|
||||
"channel_title", "views", "likes", "dislikes", "comment_count", "comments_disabled",
|
||||
"ratings_disabled", "tag_appeared_in_title_count", "tag_appeared_in_title", "title",
|
||||
"tags", "description", "trend_day_count", "trend_publish_diff", "trend_tag_highest",
|
||||
"trend_tag_total", "tags_count", "subscriber"]).dropna()
|
||||
@ex.capture
|
||||
def prepare_model(epochs_amount, _run):
|
||||
_run.info["prepare_message_ts"] = str(datetime.now())
|
||||
|
||||
X = []
|
||||
for datum in data[["views"]].values:
|
||||
try:
|
||||
X.append(int(datum))
|
||||
except:
|
||||
print(datum)
|
||||
X = pd.DataFrame(X)
|
||||
data = pd.read_csv("data_train", sep=',', skip_blank_lines=True, nrows=1087, error_bad_lines=False,
|
||||
names=["vipip install sacreddeo_id", "last_trending_date", "publish_date", "publish_hour",
|
||||
"category_id",
|
||||
"channel_title", "views", "likes", "dislikes", "comment_count"]).dropna()
|
||||
|
||||
y = []
|
||||
for datum in data[["likes"]].values:
|
||||
try:
|
||||
y.append(int(datum))
|
||||
except:
|
||||
print(datum)
|
||||
y = pd.DataFrame(y)
|
||||
X = data.loc[:, data.columns == "views"].astype(int)
|
||||
y = data.loc[:, data.columns == "likes"].astype(int)
|
||||
|
||||
min_val_sub = np.min(X)
|
||||
max_val_sub = np.max(X)
|
||||
X = (X - min_val_sub) / (max_val_sub - min_val_sub)
|
||||
print(min_val_sub)
|
||||
print(max_val_sub)
|
||||
min_val_sub = np.min(X)
|
||||
max_val_sub = np.max(X)
|
||||
X = (X - min_val_sub) / (max_val_sub - min_val_sub)
|
||||
print(min_val_sub)
|
||||
print(max_val_sub)
|
||||
|
||||
min_val_like = np.min(y)
|
||||
max_val_like = np.max(y)
|
||||
y = (y - min_val_like) / (max_val_like - min_val_like)
|
||||
min_val_like = np.min(y)
|
||||
max_val_like = np.max(y)
|
||||
y = (y - min_val_like) / (max_val_like - min_val_like)
|
||||
|
||||
print(min_val_like)
|
||||
print(max_val_like)
|
||||
print(min_val_like)
|
||||
print(max_val_like)
|
||||
|
||||
model = keras.Sequential([
|
||||
keras.layers.Dense(512, input_dim=X.shape[1], activation='relu'),
|
||||
keras.layers.Dense(256, activation='relu'),
|
||||
keras.layers.Dense(256, activation='relu'),
|
||||
keras.layers.Dense(128, activation='relu'),
|
||||
keras.layers.Dense(1, activation='linear'),
|
||||
])
|
||||
|
||||
model.compile(loss='mean_absolute_error', optimizer="Adam", metrics=['mean_absolute_error'])
|
||||
|
||||
model.fit(X, y, epochs=int(epochs_amount), validation_split=0.3)
|
||||
|
||||
data = pd.read_csv("data_dev", sep=',', error_bad_lines=False,
|
||||
skip_blank_lines=True, nrows=527, names=["video_id", "last_trending_date",
|
||||
"publish_date", "publish_hour", "category_id",
|
||||
"channel_title", "views", "likes", "dislikes",
|
||||
"comment_count"]).dropna()
|
||||
X_test = data.loc[:, data.columns == "views"].astype(int)
|
||||
y_test = data.loc[:, data.columns == "likes"].astype(int)
|
||||
|
||||
min_val_sub = np.min(X_test)
|
||||
max_val_sub = np.max(X_test)
|
||||
X_test = (X_test - min_val_sub) / (max_val_sub - min_val_sub)
|
||||
print(min_val_sub)
|
||||
print(max_val_sub)
|
||||
|
||||
min_val_like = np.min(y_test)
|
||||
max_val_like = np.max(y_test)
|
||||
print(min_val_like)
|
||||
print(max_val_like)
|
||||
|
||||
prediction = model.predict(X_test)
|
||||
|
||||
prediction_denormalized = []
|
||||
for pred in prediction:
|
||||
denorm = pred[0] * (max_val_like[0] - min_val_like[0]) + min_val_like[0]
|
||||
prediction_denormalized.append(denorm)
|
||||
|
||||
f = open("predictions.txt", "w")
|
||||
for (pred, test) in zip(prediction_denormalized, y_test.values):
|
||||
f.write("predicted: %s expected: %s\n" % (str(pred), str(test[0])))
|
||||
|
||||
error = mean_squared_error(y_test, prediction_denormalized)
|
||||
print(error)
|
||||
|
||||
model.save('model')
|
||||
|
||||
_run.log_scalar("training.metrics", error)
|
||||
return error
|
||||
|
||||
|
||||
model = keras.Sequential([
|
||||
keras.layers.Dense(512,input_dim = X.shape[1], activation='relu'),
|
||||
keras.layers.Dense(256, activation='relu'),
|
||||
keras.layers.Dense(256, activation='relu'),
|
||||
keras.layers.Dense(128, activation='relu'),
|
||||
keras.layers.Dense(1,activation='linear'),
|
||||
])
|
||||
@ex.main
|
||||
def my_main(epochs_amount):
|
||||
print(prepare_model())
|
||||
|
||||
model.compile(loss='mean_absolute_error', optimizer="Adam", metrics=['mean_absolute_error'])
|
||||
|
||||
model.fit(X, y, epochs=int(sys.argv[1]), validation_split = 0.3)
|
||||
|
||||
data = pd.read_csv("data_dev", sep=',', error_bad_lines=False,
|
||||
skip_blank_lines=True, nrows=527, names=["video_id", "last_trending_date",
|
||||
"publish_date", "publish_hour", "category_id",
|
||||
"channel_title", "views", "likes", "dislikes",
|
||||
"comment_count"]).dropna()
|
||||
X_test = data.loc[:,data.columns == "views"].astype(int)
|
||||
y_test = data.loc[:,data.columns == "likes"].astype(int)
|
||||
|
||||
min_val_sub = np.min(X_test)
|
||||
max_val_sub = np.max(X_test)
|
||||
X_test = (X_test - min_val_sub) / (max_val_sub - min_val_sub)
|
||||
print(min_val_sub)
|
||||
print(max_val_sub)
|
||||
|
||||
min_val_like = np.min(y_test)
|
||||
max_val_like = np.max(y_test)
|
||||
print(min_val_like)
|
||||
print(max_val_like)
|
||||
|
||||
prediction = model.predict(X_test)
|
||||
|
||||
prediction_denormalized = []
|
||||
for pred in prediction:
|
||||
denorm = pred[0] * (max_val_like[0] - min_val_like[0]) + min_val_like[0]
|
||||
prediction_denormalized.append(denorm)
|
||||
|
||||
f = open("predictions.txt", "w")
|
||||
for (pred, test) in zip(prediction_denormalized, y_test.values):
|
||||
f.write("predicted: %s expected: %s\n" % (str(pred), str(test[0])))
|
||||
|
||||
error = mean_squared_error(y_test, prediction_denormalized)
|
||||
print(error)
|
||||
|
||||
model.save('model')
|
||||
ex.run()
|
||||
ex.add_artifact("model.pb")
|
844
predictions.txt
844
predictions.txt
@ -1,422 +1,422 @@
|
||||
predicted: 600.7225935459137 expected: 617
|
||||
predicted: 75.86929032206535 expected: 172
|
||||
predicted: 2123.512541770935 expected: 611
|
||||
predicted: 219.68049824237823 expected: 269
|
||||
predicted: 2123.512541770935 expected: 1095
|
||||
predicted: 219.68049824237823 expected: 68
|
||||
predicted: 14.693757019937038 expected: 5
|
||||
predicted: 600.7225935459137 expected: 986
|
||||
predicted: 320.3024938106537 expected: 262
|
||||
predicted: 545.3180384635925 expected: 817
|
||||
predicted: 355.80036973953247 expected: 197
|
||||
predicted: 288.7730129957199 expected: 264
|
||||
predicted: 486.0374472141266 expected: 830
|
||||
predicted: 2123.512541770935 expected: 1415
|
||||
predicted: 482.08706545829773 expected: 134
|
||||
predicted: 59.75554421544075 expected: 58
|
||||
predicted: 109.09023916721344 expected: 93
|
||||
predicted: 695.9524660110474 expected: 830
|
||||
predicted: 2123.512541770935 expected: 1207
|
||||
predicted: 493.93860936164856 expected: 269
|
||||
predicted: 672.1024808883667 expected: 558
|
||||
predicted: 1915.4331912994385 expected: 1558
|
||||
predicted: 81.1770147383213 expected: 37
|
||||
predicted: 699.9274635314941 expected: 364
|
||||
predicted: 723.9729795455933 expected: 1020
|
||||
predicted: 12.627800181508064 expected: 11
|
||||
predicted: 537.4120926856995 expected: 225
|
||||
predicted: 699.9274635314941 expected: 228
|
||||
predicted: 1915.4331912994385 expected: 1184
|
||||
predicted: 517.6473278999329 expected: 370
|
||||
predicted: 91.83225864171982 expected: 68
|
||||
predicted: 280.89013826847076 expected: 201
|
||||
predicted: 2123.512541770935 expected: 1113
|
||||
predicted: 517.6473278999329 expected: 496
|
||||
predicted: 91.83225864171982 expected: 43
|
||||
predicted: 115.16775435209274 expected: 59
|
||||
predicted: 91.83225864171982 expected: 60
|
||||
predicted: 121.46323615312576 expected: 78
|
||||
predicted: 383.4159938097 expected: 263
|
||||
predicted: 493.93860936164856 expected: 400
|
||||
predicted: 2123.512541770935 expected: 1256
|
||||
predicted: 91.83225864171982 expected: 23
|
||||
predicted: 2123.512541770935 expected: 3345
|
||||
predicted: 139.51090186834335 expected: 98
|
||||
predicted: 774.2462439537048 expected: 238
|
||||
predicted: 155.66449910402298 expected: 69
|
||||
predicted: 537.4120926856995 expected: 170
|
||||
predicted: 48.527550891041756 expected: 31
|
||||
predicted: 165.96958500146866 expected: 102
|
||||
predicted: 2123.512541770935 expected: 1070
|
||||
predicted: 249.08315706253052 expected: 96
|
||||
predicted: 644.3031105995178 expected: 387
|
||||
predicted: 70.57235398888588 expected: 25
|
||||
predicted: 624.4822378158569 expected: 574
|
||||
predicted: 545.3180384635925 expected: 165
|
||||
predicted: 596.7626445293427 expected: 765
|
||||
predicted: 695.9524660110474 expected: 599
|
||||
predicted: 672.1024808883667 expected: 906
|
||||
predicted: 133.6499207019806 expected: 71
|
||||
predicted: 612.6023907661438 expected: 433
|
||||
predicted: 612.6023907661438 expected: 152
|
||||
predicted: 189.14595025777817 expected: 116
|
||||
predicted: 21.161466643214226 expected: 19
|
||||
predicted: 17.829518601298332 expected: 24
|
||||
predicted: 165.96958500146866 expected: 97
|
||||
predicted: 189.14595025777817 expected: 49
|
||||
predicted: 774.2462439537048 expected: 291
|
||||
predicted: 2123.512541770935 expected: 2816
|
||||
predicted: 537.4120926856995 expected: 152
|
||||
predicted: 695.9524660110474 expected: 1033
|
||||
predicted: 672.1024808883667 expected: 740
|
||||
predicted: 109.09023916721344 expected: 32
|
||||
predicted: 170.8152904510498 expected: 74
|
||||
predicted: 774.2462439537048 expected: 453
|
||||
predicted: 537.4120926856995 expected: 219
|
||||
predicted: 232.32288587093353 expected: 82
|
||||
predicted: 257.2054126262665 expected: 72
|
||||
predicted: 86.49207654595375 expected: 109
|
||||
predicted: 600.7225935459137 expected: 567
|
||||
predicted: 434.70216703414917 expected: 389
|
||||
predicted: 109.09023916721344 expected: 70
|
||||
predicted: 2123.512541770935 expected: 987
|
||||
predicted: 2123.512541770935 expected: 1812
|
||||
predicted: 699.9274635314941 expected: 169
|
||||
predicted: 387.36106872558594 expected: 270
|
||||
predicted: 43.05705846846104 expected: 33
|
||||
predicted: 211.13050639629364 expected: 75
|
||||
predicted: 2123.512541770935 expected: 1424
|
||||
predicted: 21.161469757556915 expected: 39
|
||||
predicted: 43.05705846846104 expected: 49
|
||||
predicted: 48.527550891041756 expected: 141
|
||||
predicted: 28.208953201770782 expected: 24
|
||||
predicted: 232.32288587093353 expected: 91
|
||||
predicted: 332.129297375679 expected: 101
|
||||
predicted: 723.9730293750763 expected: 401
|
||||
predicted: 723.9730293750763 expected: 570
|
||||
predicted: 236.52261435985565 expected: 106
|
||||
predicted: 32.85735569894314 expected: 43
|
||||
predicted: 774.2462439537048 expected: 439
|
||||
predicted: 1915.4331912994385 expected: 1220
|
||||
predicted: 91.83225864171982 expected: 82
|
||||
predicted: 11.343863356858492 expected: 5
|
||||
predicted: 699.9274635314941 expected: 314
|
||||
predicted: 517.6473278999329 expected: 180
|
||||
predicted: 97.1587750017643 expected: 88
|
||||
predicted: 2123.512541770935 expected: 1642
|
||||
predicted: 600.7225935459137 expected: 417
|
||||
predicted: 414.9767426252365 expected: 346
|
||||
predicted: 14.693757019937038 expected: 10
|
||||
predicted: 249.08315706253052 expected: 93
|
||||
predicted: 48.527550891041756 expected: 26
|
||||
predicted: 180.16424822807312 expected: 41
|
||||
predicted: 2123.512541770935 expected: 505
|
||||
predicted: 11.343863356858492 expected: 11
|
||||
predicted: 2123.512541770935 expected: 929
|
||||
predicted: 545.3180384635925 expected: 877
|
||||
predicted: 155.66449910402298 expected: 370
|
||||
predicted: 12.627800181508064 expected: 28
|
||||
predicted: 2123.512541770935 expected: 1085
|
||||
predicted: 1915.4331912994385 expected: 654
|
||||
predicted: 97.1587750017643 expected: 59
|
||||
predicted: 280.89013826847076 expected: 259
|
||||
predicted: 497.8892402648926 expected: 165
|
||||
predicted: 11.343863356858492 expected: 1
|
||||
predicted: 28.208953201770782 expected: 26
|
||||
predicted: 232.32288587093353 expected: 399
|
||||
predicted: 596.7625946998596 expected: 155
|
||||
predicted: 273.00728845596313 expected: 158
|
||||
predicted: 644.3031105995178 expected: 782
|
||||
predicted: 276.9487009048462 expected: 376
|
||||
predicted: 11.343863356858492 expected: 1
|
||||
predicted: 336.07454669475555 expected: 116
|
||||
predicted: 414.9767426252365 expected: 628
|
||||
predicted: 2123.512541770935 expected: 1897
|
||||
predicted: 202.41596513986588 expected: 76
|
||||
predicted: 830.9600687026978 expected: 450
|
||||
predicted: 387.36106872558594 expected: 272
|
||||
predicted: 537.4120926856995 expected: 149
|
||||
predicted: 1915.4331912994385 expected: 1069
|
||||
predicted: 316.3615049123764 expected: 286
|
||||
predicted: 273.00728845596313 expected: 526
|
||||
predicted: 81.1770147383213 expected: 29
|
||||
predicted: 414.9767426252365 expected: 373
|
||||
predicted: 232.32288587093353 expected: 481
|
||||
predicted: 219.68049824237823 expected: 74
|
||||
predicted: 70.57235398888588 expected: 54
|
||||
predicted: 240.71561586856842 expected: 102
|
||||
predicted: 11.343863356858492 expected: 22
|
||||
predicted: 2123.512541770935 expected: 1360
|
||||
predicted: 644.3031105995178 expected: 324
|
||||
predicted: 596.7626445293427 expected: 973
|
||||
predicted: 600.7225935459137 expected: 407
|
||||
predicted: 328.18449652194977 expected: 317
|
||||
predicted: 21.161469757556915 expected: 76
|
||||
predicted: 624.4822378158569 expected: 688
|
||||
predicted: 65.26819238066673 expected: 44
|
||||
predicted: 493.93860936164856 expected: 239
|
||||
predicted: 644.3031105995178 expected: 344
|
||||
predicted: 624.482337474823 expected: 688
|
||||
predicted: 537.4120926856995 expected: 442
|
||||
predicted: 198.0343341231346 expected: 157
|
||||
predicted: 2123.512541770935 expected: 1193
|
||||
predicted: 127.64895606040955 expected: 102
|
||||
predicted: 596.7626445293427 expected: 768
|
||||
predicted: 103.10498949885368 expected: 42
|
||||
predicted: 434.70216703414917 expected: 265
|
||||
predicted: 81.1770147383213 expected: 15
|
||||
predicted: 91.83225864171982 expected: 44
|
||||
predicted: 11.343863356858492 expected: 1
|
||||
predicted: 537.4120926856995 expected: 216
|
||||
predicted: 48.527550891041756 expected: 20
|
||||
predicted: 774.2462439537048 expected: 308
|
||||
predicted: 59.75554421544075 expected: 29
|
||||
predicted: 139.51090186834335 expected: 208
|
||||
predicted: 261.1651872396469 expected: 99
|
||||
predicted: 127.64895606040955 expected: 48
|
||||
predicted: 21.161469757556915 expected: 15
|
||||
predicted: 600.7225935459137 expected: 630
|
||||
predicted: 434.70216703414917 expected: 333
|
||||
predicted: 54.16564789414406 expected: 55
|
||||
predicted: 97.1587750017643 expected: 52
|
||||
predicted: 115.16775435209274 expected: 27
|
||||
predicted: 65.26819238066673 expected: 16
|
||||
predicted: 774.2462439537048 expected: 472
|
||||
predicted: 537.4120926856995 expected: 162
|
||||
predicted: 2123.512541770935 expected: 1054
|
||||
predicted: 240.71561586856842 expected: 223
|
||||
predicted: 28.208953201770782 expected: 22
|
||||
predicted: 2123.512541770935 expected: 3345
|
||||
predicted: 202.41596513986588 expected: 71
|
||||
predicted: 699.9274635314941 expected: 862
|
||||
predicted: 86.49207654595375 expected: 26
|
||||
predicted: 1915.4331912994385 expected: 624
|
||||
predicted: 103.10498949885368 expected: 24
|
||||
predicted: 48.527550891041756 expected: 115
|
||||
predicted: 2123.512541770935 expected: 3131
|
||||
predicted: 115.16775435209274 expected: 27
|
||||
predicted: 2123.512541770935 expected: 1116
|
||||
predicted: 387.36106872558594 expected: 501
|
||||
predicted: 1915.4331912994385 expected: 1380
|
||||
predicted: 644.3031105995178 expected: 538
|
||||
predicted: 65.26819238066673 expected: 77
|
||||
predicted: 411.03159296512604 expected: 270
|
||||
predicted: 1915.4331912994385 expected: 618
|
||||
predicted: 774.2462439537048 expected: 335
|
||||
predicted: 600.7225935459137 expected: 550
|
||||
predicted: 219.68049824237823 expected: 169
|
||||
predicted: 600.7225935459137 expected: 653
|
||||
predicted: 70.57235398888588 expected: 21
|
||||
predicted: 332.129297375679 expected: 225
|
||||
predicted: 2123.512541770935 expected: 2192
|
||||
predicted: 545.3180384635925 expected: 213
|
||||
predicted: 612.6023907661438 expected: 695
|
||||
predicted: 37.927471339702606 expected: 23
|
||||
predicted: 198.0343341231346 expected: 148
|
||||
predicted: 257.2054126262665 expected: 57
|
||||
predicted: 86.49207654595375 expected: 42
|
||||
predicted: 257.2054126262665 expected: 195
|
||||
predicted: 276.9487009048462 expected: 172
|
||||
predicted: 723.9729795455933 expected: 220
|
||||
predicted: 304.5386129617691 expected: 112
|
||||
predicted: 54.16564789414406 expected: 14
|
||||
predicted: 537.4120926856995 expected: 314
|
||||
predicted: 115.16775435209274 expected: 47
|
||||
predicted: 672.1024808883667 expected: 836
|
||||
predicted: 612.6023907661438 expected: 375
|
||||
predicted: 600.7225935459137 expected: 501
|
||||
predicted: 549.2710113525391 expected: 392
|
||||
predicted: 612.6023907661438 expected: 824
|
||||
predicted: 184.68381971120834 expected: 220
|
||||
predicted: 14.693757019937038 expected: 3
|
||||
predicted: 375.52579414844513 expected: 307
|
||||
predicted: 12.627800181508064 expected: 18
|
||||
predicted: 109.09023916721344 expected: 93
|
||||
predicted: 493.93860936164856 expected: 180
|
||||
predicted: 14.693757019937038 expected: 3
|
||||
predicted: 774.2462439537048 expected: 297
|
||||
predicted: 723.9729795455933 expected: 576
|
||||
predicted: 774.2462439537048 expected: 314
|
||||
predicted: 336.07454669475555 expected: 139
|
||||
predicted: 109.09023916721344 expected: 105
|
||||
predicted: 493.93860936164856 expected: 231
|
||||
predicted: 54.16564789414406 expected: 12
|
||||
predicted: 1915.4331912994385 expected: 1026
|
||||
predicted: 493.93860936164856 expected: 304
|
||||
predicted: 11.343863356858492 expected: 3
|
||||
predicted: 545.3180384635925 expected: 335
|
||||
predicted: 184.68381971120834 expected: 110
|
||||
predicted: 48.527550891041756 expected: 43
|
||||
predicted: 165.96958500146866 expected: 113
|
||||
predicted: 600.7225935459137 expected: 487
|
||||
predicted: 545.3180384635925 expected: 541
|
||||
predicted: 359.7454446554184 expected: 114
|
||||
predicted: 54.16564789414406 expected: 101
|
||||
predicted: 320.3024938106537 expected: 251
|
||||
predicted: 2123.512541770935 expected: 1358
|
||||
predicted: 549.2710113525391 expected: 1031
|
||||
predicted: 2123.512541770935 expected: 1788
|
||||
predicted: 328.18449652194977 expected: 137
|
||||
predicted: 21.161469757556915 expected: 29
|
||||
predicted: 115.16775435209274 expected: 68
|
||||
predicted: 699.9274635314941 expected: 442
|
||||
predicted: 65.26819238066673 expected: 24
|
||||
predicted: 672.1024808883667 expected: 1129
|
||||
predicted: 24.54372066259384 expected: 35
|
||||
predicted: 133.6499207019806 expected: 181
|
||||
predicted: 774.2462439537048 expected: 894
|
||||
predicted: 24.54372066259384 expected: 49
|
||||
predicted: 198.0343341231346 expected: 170
|
||||
predicted: 257.2054126262665 expected: 196
|
||||
predicted: 2123.512541770935 expected: 3345
|
||||
predicted: 115.16775435209274 expected: 24
|
||||
predicted: 644.3031105995178 expected: 629
|
||||
predicted: 774.2462439537048 expected: 290
|
||||
predicted: 644.3031105995178 expected: 342
|
||||
predicted: 240.71561586856842 expected: 177
|
||||
predicted: 65.26819238066673 expected: 57
|
||||
predicted: 1915.4331912994385 expected: 707
|
||||
predicted: 379.47086906433105 expected: 289
|
||||
predicted: 86.49207654595375 expected: 78
|
||||
predicted: 545.3180384635925 expected: 530
|
||||
predicted: 320.3024938106537 expected: 276
|
||||
predicted: 600.7225935459137 expected: 389
|
||||
predicted: 91.83225864171982 expected: 173
|
||||
predicted: 774.2462439537048 expected: 717
|
||||
predicted: 699.9274635314941 expected: 707
|
||||
predicted: 774.2462937831879 expected: 440
|
||||
predicted: 37.927471339702606 expected: 36
|
||||
predicted: 139.51090186834335 expected: 115
|
||||
predicted: 232.32288587093353 expected: 437
|
||||
predicted: 115.16775435209274 expected: 75
|
||||
predicted: 2123.512541770935 expected: 611
|
||||
predicted: 70.57235398888588 expected: 17
|
||||
predicted: 28.208953201770782 expected: 52
|
||||
predicted: 699.9274635314941 expected: 849
|
||||
predicted: 596.7626445293427 expected: 230
|
||||
predicted: 545.3180384635925 expected: 537
|
||||
predicted: 2123.512541770935 expected: 1645
|
||||
predicted: 545.3180384635925 expected: 221
|
||||
predicted: 236.52261435985565 expected: 167
|
||||
predicted: 596.7626445293427 expected: 274
|
||||
predicted: 273.00728845596313 expected: 141
|
||||
predicted: 774.2462439537048 expected: 414
|
||||
predicted: 28.208953201770782 expected: 32
|
||||
predicted: 545.3180384635925 expected: 203
|
||||
predicted: 21.161469757556915 expected: 18
|
||||
predicted: 320.3024938106537 expected: 212
|
||||
predicted: 86.49207654595375 expected: 29
|
||||
predicted: 2123.512541770935 expected: 1665
|
||||
predicted: 537.4120926856995 expected: 192
|
||||
predicted: 65.26819238066673 expected: 24
|
||||
predicted: 328.18449652194977 expected: 175
|
||||
predicted: 2123.512541770935 expected: 1329
|
||||
predicted: 723.9729795455933 expected: 261
|
||||
predicted: 545.3180384635925 expected: 712
|
||||
predicted: 189.14595025777817 expected: 52
|
||||
predicted: 537.4120926856995 expected: 157
|
||||
predicted: 367.6356443166733 expected: 285
|
||||
predicted: 486.0374970436096 expected: 405
|
||||
predicted: 493.93860936164856 expected: 452
|
||||
predicted: 2123.512541770935 expected: 1267
|
||||
predicted: 28.208953201770782 expected: 50
|
||||
predicted: 211.13050639629364 expected: 150
|
||||
predicted: 316.3615049123764 expected: 255
|
||||
predicted: 43.05705846846104 expected: 18
|
||||
predicted: 11.343863356858492 expected: 4
|
||||
predicted: 640.3356373310089 expected: 437
|
||||
predicted: 28.208953201770782 expected: 24
|
||||
predicted: 65.26819238066673 expected: 71
|
||||
predicted: 774.2462439537048 expected: 532
|
||||
predicted: 699.9274635314941 expected: 729
|
||||
predicted: 54.16564789414406 expected: 35
|
||||
predicted: 672.1024808883667 expected: 368
|
||||
predicted: 11.343863356858492 expected: 12
|
||||
predicted: 2123.512541770935 expected: 2034
|
||||
predicted: 644.3031105995178 expected: 391
|
||||
predicted: 545.3180384635925 expected: 560
|
||||
predicted: 774.2462439537048 expected: 1011
|
||||
predicted: 672.1024808883667 expected: 600
|
||||
predicted: 328.18449652194977 expected: 167
|
||||
predicted: 28.208953201770782 expected: 34
|
||||
predicted: 70.57235398888588 expected: 47
|
||||
predicted: 2123.512541770935 expected: 1148
|
||||
predicted: 434.70216703414917 expected: 326
|
||||
predicted: 2123.512541770935 expected: 876
|
||||
predicted: 12.627800181508064 expected: 10
|
||||
predicted: 2123.512541770935 expected: 3345
|
||||
predicted: 612.6023907661438 expected: 993
|
||||
predicted: 155.66449910402298 expected: 49
|
||||
predicted: 244.90425729751587 expected: 230
|
||||
predicted: 644.3031105995178 expected: 679
|
||||
predicted: 2123.512541770935 expected: 2201
|
||||
predicted: 276.9487009048462 expected: 202
|
||||
predicted: 830.9600687026978 expected: 663
|
||||
predicted: 184.68381971120834 expected: 79
|
||||
predicted: 482.08706545829773 expected: 214
|
||||
predicted: 612.6023907661438 expected: 829
|
||||
predicted: 115.16775435209274 expected: 149
|
||||
predicted: 545.3180384635925 expected: 729
|
||||
predicted: 91.83225864171982 expected: 19
|
||||
predicted: 383.4159938097 expected: 173
|
||||
predicted: 596.7626445293427 expected: 240
|
||||
predicted: 211.13050639629364 expected: 89
|
||||
predicted: 54.16564789414406 expected: 49
|
||||
predicted: 600.7225935459137 expected: 228
|
||||
predicted: 2123.512541770935 expected: 651
|
||||
predicted: 32.85735569894314 expected: 15
|
||||
predicted: 165.96958500146866 expected: 61
|
||||
predicted: 81.1770147383213 expected: 84
|
||||
predicted: 54.16564789414406 expected: 36
|
||||
predicted: 198.0343341231346 expected: 101
|
||||
predicted: 462.3333628177643 expected: 184
|
||||
predicted: 486.0374472141266 expected: 268
|
||||
predicted: 2123.512541770935 expected: 2910
|
||||
predicted: 81.1770147383213 expected: 106
|
||||
predicted: 434.70216703414917 expected: 433
|
||||
predicted: 2123.512541770935 expected: 1700
|
||||
predicted: 75.86929032206535 expected: 41
|
||||
predicted: 11.343863356858492 expected: 1
|
||||
predicted: 600.7225935459137 expected: 520
|
||||
predicted: 17.82952171564102 expected: 50
|
||||
predicted: 644.3031105995178 expected: 734
|
||||
predicted: 37.927471339702606 expected: 45
|
||||
predicted: 2123.512541770935 expected: 2837
|
||||
predicted: 81.1770147383213 expected: 23
|
||||
predicted: 219.68049824237823 expected: 145
|
||||
predicted: 774.2462439537048 expected: 185
|
||||
predicted: 24.54372066259384 expected: 42
|
||||
predicted: 355.80036973953247 expected: 410
|
||||
predicted: 2123.512541770935 expected: 1622
|
||||
predicted: 612.6023907661438 expected: 661
|
||||
predicted: 14.693757019937038 expected: 4
|
||||
predicted: 462.3333628177643 expected: 369
|
||||
predicted: 411.03159296512604 expected: 221
|
||||
predicted: 462.3333628177643 expected: 234
|
||||
predicted: 236.52261435985565 expected: 380
|
||||
predicted: 545.3180384635925 expected: 249
|
||||
predicted: 12.627800181508064 expected: 25
|
||||
predicted: 2123.512541770935 expected: 1876
|
||||
predicted: 411.03159296512604 expected: 241
|
||||
predicted: 343.96504533290863 expected: 334
|
||||
predicted: 407.0865429639816 expected: 303
|
||||
predicted: 17.82952171564102 expected: 19
|
||||
predicted: 2123.512541770935 expected: 1248
|
||||
predicted: 232.32288587093353 expected: 501
|
||||
predicted: 644.3031105995178 expected: 328
|
||||
predicted: 414.9767426252365 expected: 406
|
||||
predicted: 273.00728845596313 expected: 141
|
||||
predicted: 232.32288587093353 expected: 408
|
||||
predicted: 11.343863356858492 expected: 4
|
||||
predicted: 2123.512541770935 expected: 3147
|
||||
predicted: 109.09023916721344 expected: 99
|
||||
predicted: 320.3024938106537 expected: 89
|
||||
predicted: 103.10498949885368 expected: 61
|
||||
predicted: 65.26819238066673 expected: 27
|
||||
predicted: 2123.512541770935 expected: 1088
|
||||
predicted: 109.09023916721344 expected: 105
|
||||
predicted: 215.4403829574585 expected: 173
|
||||
predicted: 1915.4327926635742 expected: 1496
|
||||
predicted: 774.2463436126709 expected: 866
|
||||
predicted: 723.9729795455933 expected: 399
|
||||
predicted: 407.0865429639816 expected: 317
|
||||
predicted: 401.773549079895 expected: 617
|
||||
predicted: 73.26794216036797 expected: 172
|
||||
predicted: 1314.783121585846 expected: 611
|
||||
predicted: 144.73656958341599 expected: 269
|
||||
predicted: 1314.783121585846 expected: 1095
|
||||
predicted: 144.73656958341599 expected: 68
|
||||
predicted: 42.01345157623291 expected: 5
|
||||
predicted: 401.773549079895 expected: 986
|
||||
predicted: 212.28029680252075 expected: 262
|
||||
predicted: 364.7861204147339 expected: 817
|
||||
predicted: 237.52211904525757 expected: 197
|
||||
predicted: 190.2229397892952 expected: 264
|
||||
predicted: 325.382360458374 expected: 830
|
||||
predicted: 1314.783121585846 expected: 1415
|
||||
predicted: 322.7557487487793 expected: 134
|
||||
predicted: 65.99762749671936 expected: 58
|
||||
predicted: 87.60356676578522 expected: 93
|
||||
predicted: 464.96899366378784 expected: 830
|
||||
predicted: 1314.783121585846 expected: 1207
|
||||
predicted: 330.63169717788696 expected: 269
|
||||
predicted: 449.28351950645447 expected: 558
|
||||
predicted: 1190.0794587135315 expected: 1558
|
||||
predicted: 75.64841490983963 expected: 37
|
||||
predicted: 467.5880811214447 expected: 364
|
||||
predicted: 483.3023567199707 expected: 1020
|
||||
predicted: 40.28947292268276 expected: 11
|
||||
predicted: 359.5212368965149 expected: 225
|
||||
predicted: 467.5880811214447 expected: 228
|
||||
predicted: 1190.0794587135315 expected: 1184
|
||||
predicted: 346.38180017471313 expected: 370
|
||||
predicted: 80.41028225421906 expected: 68
|
||||
predicted: 184.85256725549698 expected: 201
|
||||
predicted: 1314.783121585846 expected: 1113
|
||||
predicted: 346.38180017471313 expected: 496
|
||||
predicted: 80.41028225421906 expected: 43
|
||||
predicted: 90.07705247402191 expected: 59
|
||||
predicted: 80.41028225421906 expected: 60
|
||||
predicted: 92.55052572488785 expected: 78
|
||||
predicted: 256.8926827907562 expected: 263
|
||||
predicted: 330.63169717788696 expected: 400
|
||||
predicted: 1314.783121585846 expected: 1256
|
||||
predicted: 80.41028225421906 expected: 23
|
||||
predicted: 1314.783121585846 expected: 3345
|
||||
predicted: 99.96638607978821 expected: 98
|
||||
predicted: 514.7448103427887 expected: 238
|
||||
predicted: 107.66191440820694 expected: 69
|
||||
predicted: 359.5212368965149 expected: 170
|
||||
predicted: 61.403461277484894 expected: 31
|
||||
predicted: 112.91360557079315 expected: 102
|
||||
predicted: 1314.783121585846 expected: 1070
|
||||
predicted: 163.47358882427216 expected: 96
|
||||
predicted: 430.82638001441956 expected: 387
|
||||
predicted: 70.90167081356049 expected: 25
|
||||
predicted: 417.6245069503784 expected: 574
|
||||
predicted: 364.7861204147339 expected: 165
|
||||
predicted: 399.1275038719177 expected: 765
|
||||
predicted: 464.96899366378784 expected: 599
|
||||
predicted: 449.28351950645447 expected: 906
|
||||
predicted: 97.49749714136124 expected: 71
|
||||
predicted: 409.7033631801605 expected: 433
|
||||
predicted: 409.7033631801605 expected: 152
|
||||
predicted: 126.12042421102524 expected: 116
|
||||
predicted: 46.30681589245796 expected: 19
|
||||
predicted: 43.969118639826775 expected: 24
|
||||
predicted: 112.91360557079315 expected: 97
|
||||
predicted: 126.12042421102524 expected: 49
|
||||
predicted: 514.7448103427887 expected: 291
|
||||
predicted: 1314.783121585846 expected: 2816
|
||||
predicted: 359.5212368965149 expected: 152
|
||||
predicted: 464.96899366378784 expected: 1033
|
||||
predicted: 449.28351950645447 expected: 740
|
||||
predicted: 87.60356676578522 expected: 32
|
||||
predicted: 115.54896235466003 expected: 74
|
||||
predicted: 514.7448103427887 expected: 453
|
||||
predicted: 359.5212368965149 expected: 219
|
||||
predicted: 152.77325546741486 expected: 82
|
||||
predicted: 168.81658005714417 expected: 72
|
||||
predicted: 78.01309171319008 expected: 109
|
||||
predicted: 401.773549079895 expected: 567
|
||||
predicted: 291.23790311813354 expected: 389
|
||||
predicted: 87.60356676578522 expected: 70
|
||||
predicted: 1314.783121585846 expected: 987
|
||||
predicted: 1314.783121585846 expected: 1812
|
||||
predicted: 467.5880811214447 expected: 169
|
||||
predicted: 259.63664293289185 expected: 270
|
||||
predicted: 58.91799157857895 expected: 33
|
||||
predicted: 139.40237325429916 expected: 75
|
||||
predicted: 1314.783121585846 expected: 1424
|
||||
predicted: 46.30680966377258 expected: 39
|
||||
predicted: 58.91799157857895 expected: 49
|
||||
predicted: 61.403461277484894 expected: 141
|
||||
predicted: 51.25085982680321 expected: 24
|
||||
predicted: 152.77325546741486 expected: 91
|
||||
predicted: 220.80836367607117 expected: 101
|
||||
predicted: 483.30240654945374 expected: 401
|
||||
predicted: 483.30240654945374 expected: 570
|
||||
predicted: 155.45215076208115 expected: 106
|
||||
predicted: 53.80667006969452 expected: 43
|
||||
predicted: 514.7448103427887 expected: 439
|
||||
predicted: 1190.0794587135315 expected: 1220
|
||||
predicted: 80.41028225421906 expected: 82
|
||||
predicted: 38.92591091990471 expected: 5
|
||||
predicted: 467.5880811214447 expected: 314
|
||||
predicted: 346.38180017471313 expected: 180
|
||||
predicted: 82.76570945978165 expected: 88
|
||||
predicted: 1314.783121585846 expected: 1642
|
||||
predicted: 401.773549079895 expected: 417
|
||||
predicted: 278.1119203567505 expected: 346
|
||||
predicted: 42.01345157623291 expected: 10
|
||||
predicted: 163.47358882427216 expected: 93
|
||||
predicted: 61.403461277484894 expected: 26
|
||||
predicted: 120.82244145870209 expected: 41
|
||||
predicted: 1314.783121585846 expected: 505
|
||||
predicted: 38.92591091990471 expected: 11
|
||||
predicted: 1314.783121585846 expected: 929
|
||||
predicted: 364.7861204147339 expected: 877
|
||||
predicted: 107.66191440820694 expected: 370
|
||||
predicted: 40.28947292268276 expected: 28
|
||||
predicted: 1314.783121585846 expected: 1085
|
||||
predicted: 1190.0794587135315 expected: 654
|
||||
predicted: 82.76570945978165 expected: 59
|
||||
predicted: 184.85256725549698 expected: 259
|
||||
predicted: 333.25636553764343 expected: 165
|
||||
predicted: 38.92591091990471 expected: 1
|
||||
predicted: 51.25085982680321 expected: 26
|
||||
predicted: 152.77325546741486 expected: 399
|
||||
predicted: 399.1275038719177 expected: 155
|
||||
predicted: 179.49257171154022 expected: 158
|
||||
predicted: 430.82638001441956 expected: 782
|
||||
predicted: 182.16745573282242 expected: 376
|
||||
predicted: 38.92591091990471 expected: 1
|
||||
predicted: 223.59136521816254 expected: 116
|
||||
predicted: 278.1119203567505 expected: 628
|
||||
predicted: 1314.783121585846 expected: 1897
|
||||
predicted: 134.08489471673965 expected: 76
|
||||
predicted: 548.8336579799652 expected: 450
|
||||
predicted: 259.63664293289185 expected: 272
|
||||
predicted: 359.5212368965149 expected: 149
|
||||
predicted: 1190.0794587135315 expected: 1069
|
||||
predicted: 209.44163572788239 expected: 286
|
||||
predicted: 179.49255925416946 expected: 526
|
||||
predicted: 75.64841490983963 expected: 29
|
||||
predicted: 278.1119203567505 expected: 373
|
||||
predicted: 152.77325546741486 expected: 481
|
||||
predicted: 144.73656958341599 expected: 74
|
||||
predicted: 70.90167081356049 expected: 54
|
||||
predicted: 158.13044810295105 expected: 102
|
||||
predicted: 38.92591091990471 expected: 22
|
||||
predicted: 1314.783121585846 expected: 1360
|
||||
predicted: 430.82638001441956 expected: 324
|
||||
predicted: 399.1275038719177 expected: 973
|
||||
predicted: 401.773549079895 expected: 407
|
||||
predicted: 218.01178359985352 expected: 317
|
||||
predicted: 46.30680966377258 expected: 76
|
||||
predicted: 417.6245069503784 expected: 688
|
||||
predicted: 68.44694590568542 expected: 44
|
||||
predicted: 330.63169717788696 expected: 239
|
||||
predicted: 430.82638001441956 expected: 344
|
||||
predicted: 417.6245069503784 expected: 688
|
||||
predicted: 359.5212867259979 expected: 442
|
||||
predicted: 131.4261554479599 expected: 157
|
||||
predicted: 1314.783121585846 expected: 1193
|
||||
predicted: 95.02401143312454 expected: 102
|
||||
predicted: 399.1275038719177 expected: 768
|
||||
predicted: 85.1340674161911 expected: 42
|
||||
predicted: 291.23790311813354 expected: 265
|
||||
predicted: 75.64841490983963 expected: 15
|
||||
predicted: 80.41028225421906 expected: 44
|
||||
predicted: 38.92591091990471 expected: 1
|
||||
predicted: 359.5212368965149 expected: 216
|
||||
predicted: 61.403461277484894 expected: 20
|
||||
predicted: 514.7448103427887 expected: 308
|
||||
predicted: 65.99762749671936 expected: 29
|
||||
predicted: 99.96638607978821 expected: 208
|
||||
predicted: 171.48555928468704 expected: 99
|
||||
predicted: 95.02401143312454 expected: 48
|
||||
predicted: 46.30680966377258 expected: 15
|
||||
predicted: 401.773549079895 expected: 630
|
||||
predicted: 291.23790311813354 expected: 333
|
||||
predicted: 63.73411077260971 expected: 55
|
||||
predicted: 82.76570945978165 expected: 52
|
||||
predicted: 90.07705247402191 expected: 27
|
||||
predicted: 68.44694590568542 expected: 16
|
||||
predicted: 514.7448103427887 expected: 472
|
||||
predicted: 359.5212368965149 expected: 162
|
||||
predicted: 1314.783121585846 expected: 1054
|
||||
predicted: 158.13044810295105 expected: 223
|
||||
predicted: 51.25085982680321 expected: 22
|
||||
predicted: 1314.783121585846 expected: 3345
|
||||
predicted: 134.08489471673965 expected: 71
|
||||
predicted: 467.5880811214447 expected: 862
|
||||
predicted: 78.0130854845047 expected: 26
|
||||
predicted: 1190.0794587135315 expected: 624
|
||||
predicted: 85.1340674161911 expected: 24
|
||||
predicted: 61.403461277484894 expected: 115
|
||||
predicted: 1314.783121585846 expected: 3131
|
||||
predicted: 90.07705247402191 expected: 27
|
||||
predicted: 1314.783121585846 expected: 1116
|
||||
predicted: 259.63664293289185 expected: 501
|
||||
predicted: 1190.0794587135315 expected: 1380
|
||||
predicted: 430.82638001441956 expected: 538
|
||||
predicted: 68.44694590568542 expected: 77
|
||||
predicted: 275.48745131492615 expected: 270
|
||||
predicted: 1190.0794587135315 expected: 618
|
||||
predicted: 514.7448103427887 expected: 335
|
||||
predicted: 401.773549079895 expected: 550
|
||||
predicted: 144.73656958341599 expected: 169
|
||||
predicted: 401.773549079895 expected: 653
|
||||
predicted: 70.90167081356049 expected: 21
|
||||
predicted: 220.80836367607117 expected: 225
|
||||
predicted: 1314.783121585846 expected: 2192
|
||||
predicted: 364.7861204147339 expected: 213
|
||||
predicted: 409.7033631801605 expected: 695
|
||||
predicted: 56.28768002986908 expected: 23
|
||||
predicted: 131.4261554479599 expected: 148
|
||||
predicted: 168.81658005714417 expected: 57
|
||||
predicted: 78.01309171319008 expected: 42
|
||||
predicted: 168.81658005714417 expected: 195
|
||||
predicted: 182.16745573282242 expected: 172
|
||||
predicted: 483.3023567199707 expected: 220
|
||||
predicted: 201.05135983228683 expected: 112
|
||||
predicted: 63.73411077260971 expected: 14
|
||||
predicted: 359.5212867259979 expected: 314
|
||||
predicted: 90.07705247402191 expected: 47
|
||||
predicted: 449.28351950645447 expected: 836
|
||||
predicted: 409.7033631801605 expected: 375
|
||||
predicted: 401.773549079895 expected: 501
|
||||
predicted: 367.4239935874939 expected: 392
|
||||
predicted: 409.7033631801605 expected: 824
|
||||
predicted: 123.46761465072632 expected: 220
|
||||
predicted: 42.01345157623291 expected: 3
|
||||
predicted: 251.4055597782135 expected: 307
|
||||
predicted: 40.28947292268276 expected: 18
|
||||
predicted: 87.60356676578522 expected: 93
|
||||
predicted: 330.63169717788696 expected: 180
|
||||
predicted: 42.01345157623291 expected: 3
|
||||
predicted: 514.7448103427887 expected: 297
|
||||
predicted: 483.3023567199707 expected: 576
|
||||
predicted: 514.7448103427887 expected: 314
|
||||
predicted: 223.59136521816254 expected: 139
|
||||
predicted: 87.60356676578522 expected: 105
|
||||
predicted: 330.63169717788696 expected: 231
|
||||
predicted: 63.73411077260971 expected: 12
|
||||
predicted: 1190.0794587135315 expected: 1026
|
||||
predicted: 330.63169717788696 expected: 304
|
||||
predicted: 38.92591091990471 expected: 3
|
||||
predicted: 364.7861204147339 expected: 335
|
||||
predicted: 123.46761465072632 expected: 110
|
||||
predicted: 61.403461277484894 expected: 43
|
||||
predicted: 112.91360557079315 expected: 113
|
||||
predicted: 401.773549079895 expected: 487
|
||||
predicted: 364.7861204147339 expected: 541
|
||||
predicted: 240.3073878288269 expected: 114
|
||||
predicted: 63.73411077260971 expected: 101
|
||||
predicted: 212.28029680252075 expected: 251
|
||||
predicted: 1314.7829222679138 expected: 1358
|
||||
predicted: 367.4239935874939 expected: 1031
|
||||
predicted: 1314.783121585846 expected: 1788
|
||||
predicted: 218.01178359985352 expected: 137
|
||||
predicted: 46.30680966377258 expected: 29
|
||||
predicted: 90.07705247402191 expected: 68
|
||||
predicted: 467.5880811214447 expected: 442
|
||||
predicted: 68.44694590568542 expected: 24
|
||||
predicted: 449.28351950645447 expected: 1129
|
||||
predicted: 48.75834237039089 expected: 35
|
||||
predicted: 97.49749714136124 expected: 181
|
||||
predicted: 514.7448103427887 expected: 894
|
||||
predicted: 48.75834237039089 expected: 49
|
||||
predicted: 131.4261554479599 expected: 170
|
||||
predicted: 168.81658005714417 expected: 196
|
||||
predicted: 1314.783121585846 expected: 3345
|
||||
predicted: 90.07705247402191 expected: 24
|
||||
predicted: 430.82638001441956 expected: 629
|
||||
predicted: 514.7448103427887 expected: 290
|
||||
predicted: 430.82638001441956 expected: 342
|
||||
predicted: 158.13044810295105 expected: 177
|
||||
predicted: 68.44694590568542 expected: 57
|
||||
predicted: 1190.0794587135315 expected: 707
|
||||
predicted: 254.1435902118683 expected: 289
|
||||
predicted: 78.01309171319008 expected: 78
|
||||
predicted: 364.7861204147339 expected: 530
|
||||
predicted: 212.28029680252075 expected: 276
|
||||
predicted: 401.773549079895 expected: 389
|
||||
predicted: 80.41028225421906 expected: 173
|
||||
predicted: 514.7448103427887 expected: 717
|
||||
predicted: 467.5880811214447 expected: 707
|
||||
predicted: 514.7448103427887 expected: 440
|
||||
predicted: 56.28769248723984 expected: 36
|
||||
predicted: 99.96638607978821 expected: 115
|
||||
predicted: 152.77325546741486 expected: 437
|
||||
predicted: 90.07705247402191 expected: 75
|
||||
predicted: 1314.783121585846 expected: 611
|
||||
predicted: 70.90167081356049 expected: 17
|
||||
predicted: 51.25085982680321 expected: 52
|
||||
predicted: 467.5880811214447 expected: 849
|
||||
predicted: 399.1275038719177 expected: 230
|
||||
predicted: 364.7861204147339 expected: 537
|
||||
predicted: 1314.783121585846 expected: 1645
|
||||
predicted: 364.7861204147339 expected: 221
|
||||
predicted: 155.45215076208115 expected: 167
|
||||
predicted: 399.1275038719177 expected: 274
|
||||
predicted: 179.49255925416946 expected: 141
|
||||
predicted: 514.7448103427887 expected: 414
|
||||
predicted: 51.25085982680321 expected: 32
|
||||
predicted: 364.7861204147339 expected: 203
|
||||
predicted: 46.30680966377258 expected: 18
|
||||
predicted: 212.28029680252075 expected: 212
|
||||
predicted: 78.01309171319008 expected: 29
|
||||
predicted: 1314.783121585846 expected: 1665
|
||||
predicted: 359.5212368965149 expected: 192
|
||||
predicted: 68.44694590568542 expected: 24
|
||||
predicted: 218.01178359985352 expected: 175
|
||||
predicted: 1314.783121585846 expected: 1329
|
||||
predicted: 483.3023567199707 expected: 261
|
||||
predicted: 364.7861204147339 expected: 712
|
||||
predicted: 126.12042421102524 expected: 52
|
||||
predicted: 359.5212368965149 expected: 157
|
||||
predicted: 245.8841540813446 expected: 285
|
||||
predicted: 325.382360458374 expected: 405
|
||||
predicted: 330.63169717788696 expected: 452
|
||||
predicted: 1314.783121585846 expected: 1267
|
||||
predicted: 51.25085982680321 expected: 50
|
||||
predicted: 139.40237325429916 expected: 150
|
||||
predicted: 209.44163572788239 expected: 255
|
||||
predicted: 58.91799157857895 expected: 18
|
||||
predicted: 38.92591091990471 expected: 4
|
||||
predicted: 428.1859655380249 expected: 437
|
||||
predicted: 51.25085982680321 expected: 24
|
||||
predicted: 68.44694590568542 expected: 71
|
||||
predicted: 514.7448103427887 expected: 532
|
||||
predicted: 467.5880811214447 expected: 729
|
||||
predicted: 63.73411077260971 expected: 35
|
||||
predicted: 449.28351950645447 expected: 368
|
||||
predicted: 38.92591091990471 expected: 12
|
||||
predicted: 1314.783121585846 expected: 2034
|
||||
predicted: 430.82638001441956 expected: 391
|
||||
predicted: 364.7861204147339 expected: 560
|
||||
predicted: 514.7448103427887 expected: 1011
|
||||
predicted: 449.28351950645447 expected: 600
|
||||
predicted: 218.01178359985352 expected: 167
|
||||
predicted: 51.25085982680321 expected: 34
|
||||
predicted: 70.90167081356049 expected: 47
|
||||
predicted: 1314.783121585846 expected: 1148
|
||||
predicted: 291.23790311813354 expected: 326
|
||||
predicted: 1314.783121585846 expected: 876
|
||||
predicted: 40.28947292268276 expected: 10
|
||||
predicted: 1314.783121585846 expected: 3345
|
||||
predicted: 409.7033631801605 expected: 993
|
||||
predicted: 107.66191440820694 expected: 49
|
||||
predicted: 160.80200600624084 expected: 230
|
||||
predicted: 430.82638001441956 expected: 679
|
||||
predicted: 1314.7829222679138 expected: 2201
|
||||
predicted: 182.16745573282242 expected: 202
|
||||
predicted: 548.8336579799652 expected: 663
|
||||
predicted: 123.46761465072632 expected: 79
|
||||
predicted: 322.7557487487793 expected: 214
|
||||
predicted: 409.7033631801605 expected: 829
|
||||
predicted: 90.07705247402191 expected: 149
|
||||
predicted: 364.7861204147339 expected: 729
|
||||
predicted: 80.41028225421906 expected: 19
|
||||
predicted: 256.8926827907562 expected: 173
|
||||
predicted: 399.1275038719177 expected: 240
|
||||
predicted: 139.40237325429916 expected: 89
|
||||
predicted: 63.73411077260971 expected: 49
|
||||
predicted: 401.773549079895 expected: 228
|
||||
predicted: 1314.783121585846 expected: 651
|
||||
predicted: 53.80667006969452 expected: 15
|
||||
predicted: 112.91360557079315 expected: 61
|
||||
predicted: 75.64841490983963 expected: 84
|
||||
predicted: 63.73411077260971 expected: 36
|
||||
predicted: 131.4261554479599 expected: 101
|
||||
predicted: 309.62283968925476 expected: 184
|
||||
predicted: 325.382360458374 expected: 268
|
||||
predicted: 1314.783121585846 expected: 2910
|
||||
predicted: 75.64841490983963 expected: 106
|
||||
predicted: 291.23790311813354 expected: 433
|
||||
predicted: 1314.783121585846 expected: 1700
|
||||
predicted: 73.26794216036797 expected: 41
|
||||
predicted: 38.92591091990471 expected: 1
|
||||
predicted: 401.773549079895 expected: 520
|
||||
predicted: 43.969118639826775 expected: 50
|
||||
predicted: 430.82638001441956 expected: 734
|
||||
predicted: 56.28769248723984 expected: 45
|
||||
predicted: 1314.7829222679138 expected: 2837
|
||||
predicted: 75.64841490983963 expected: 23
|
||||
predicted: 144.73656958341599 expected: 145
|
||||
predicted: 514.7448103427887 expected: 185
|
||||
predicted: 48.75834237039089 expected: 42
|
||||
predicted: 237.52211904525757 expected: 410
|
||||
predicted: 1314.783121585846 expected: 1622
|
||||
predicted: 409.7033631801605 expected: 661
|
||||
predicted: 42.01345157623291 expected: 4
|
||||
predicted: 309.62283968925476 expected: 369
|
||||
predicted: 275.48745131492615 expected: 221
|
||||
predicted: 309.62283968925476 expected: 234
|
||||
predicted: 155.45215076208115 expected: 380
|
||||
predicted: 364.7861204147339 expected: 249
|
||||
predicted: 40.28947292268276 expected: 25
|
||||
predicted: 1314.783121585846 expected: 1876
|
||||
predicted: 275.48745131492615 expected: 241
|
||||
predicted: 229.16215193271637 expected: 334
|
||||
predicted: 272.8629822731018 expected: 303
|
||||
predicted: 43.969118639826775 expected: 19
|
||||
predicted: 1314.783121585846 expected: 1248
|
||||
predicted: 152.77325546741486 expected: 501
|
||||
predicted: 430.82638001441956 expected: 328
|
||||
predicted: 278.1119203567505 expected: 406
|
||||
predicted: 179.49255925416946 expected: 141
|
||||
predicted: 152.77325546741486 expected: 408
|
||||
predicted: 38.92591091990471 expected: 4
|
||||
predicted: 1314.783121585846 expected: 3147
|
||||
predicted: 87.60356676578522 expected: 99
|
||||
predicted: 212.28029680252075 expected: 89
|
||||
predicted: 85.1340674161911 expected: 61
|
||||
predicted: 68.44694590568542 expected: 27
|
||||
predicted: 1314.7829222679138 expected: 1088
|
||||
predicted: 87.6035729944706 expected: 105
|
||||
predicted: 142.0643888115883 expected: 173
|
||||
predicted: 1190.0794587135315 expected: 1496
|
||||
predicted: 514.7448103427887 expected: 866
|
||||
predicted: 483.30240654945374 expected: 399
|
||||
predicted: 272.8629324436188 expected: 317
|
||||
|
25
rmse.txt
Normal file
25
rmse.txt
Normal file
@ -0,0 +1,25 @@
|
||||
109845.55756236914
|
||||
104845.55756236914
|
||||
109845.55756236914
|
||||
109845.55756236914
|
||||
104845.55756236914
|
||||
19845.55756236914
|
||||
109845.55756236914
|
||||
109845.55756236914
|
||||
109845.55756236914
|
||||
109845.55756236914
|
||||
109845.55756236914
|
||||
109845.55756236914
|
||||
109845.55756236914
|
||||
109845.55756236914
|
||||
109845.55756236914
|
||||
109845.55756236914
|
||||
109845.55756236914
|
||||
109845.55756236914
|
||||
109845.55756236914
|
||||
109845.55756236914
|
||||
109845.55756236914
|
||||
109845.55756236914
|
||||
109845.55756236914
|
||||
114882.99377127373
|
||||
129787.96004765884
|
Loading…
Reference in New Issue
Block a user