evaluation branch
Some checks failed
s434765-training/pipeline/head There was a failure building this commit
Some checks failed
s434765-training/pipeline/head There was a failure building this commit
This commit is contained in:
parent
e6ed31bed8
commit
630aba3217
0
JenkinsFIleEval
Normal file
0
JenkinsFIleEval
Normal file
38
evaluate_network.py
Normal file
38
evaluate_network.py
Normal file
@ -0,0 +1,38 @@
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
from sklearn.metrics import mean_squared_error
|
||||
from tensorflow import keras
|
||||
|
||||
model = keras.models.load_model('model')
|
||||
data = pd.read_csv("data_dev", sep=',', error_bad_lines=False,
|
||||
skip_blank_lines=True, nrows=527, names=["video_id", "last_trending_date",
|
||||
"publish_date", "publish_hour", "category_id",
|
||||
"channel_title", "views", "likes", "dislikes",
|
||||
"comment_count"]).dropna()
|
||||
X_test = data.loc[:,data.columns == "views"].astype(int)
|
||||
y_test = data.loc[:,data.columns == "likes"].astype(int)
|
||||
|
||||
min_val_sub = np.min(X_test)
|
||||
max_val_sub = np.max(X_test)
|
||||
X_test = (X_test - min_val_sub) / (max_val_sub - min_val_sub)
|
||||
print(min_val_sub)
|
||||
print(max_val_sub)
|
||||
|
||||
min_val_like = np.min(y_test)
|
||||
max_val_like = np.max(y_test)
|
||||
print(min_val_like)
|
||||
print(max_val_like)
|
||||
|
||||
prediction = model.predict(X_test)
|
||||
|
||||
prediction_denormalized = []
|
||||
for pred in prediction:
|
||||
denorm = pred[0] * (max_val_like[0] - min_val_like[0]) + min_val_like[0]
|
||||
prediction_denormalized.append(denorm)
|
||||
|
||||
f = open("predictions.txt", "w")
|
||||
for (pred, test) in zip(prediction_denormalized, y_test.values):
|
||||
f.write("predicted: %s expected: %s\n" % (str(pred), str(test[0])))
|
||||
|
||||
error = mean_squared_error(y_test, prediction_denormalized)
|
||||
print(error)
|
@ -42,37 +42,4 @@ model.compile(loss='mean_absolute_error', optimizer="Adam", metrics=['mean_absol
|
||||
|
||||
model.fit(X, y, epochs=int(sys.argv[1]), validation_split = 0.3)
|
||||
|
||||
data = pd.read_csv("data_dev", sep=',', error_bad_lines=False,
|
||||
skip_blank_lines=True, nrows=527, names=["video_id", "last_trending_date",
|
||||
"publish_date", "publish_hour", "category_id",
|
||||
"channel_title", "views", "likes", "dislikes",
|
||||
"comment_count"]).dropna()
|
||||
X_test = data.loc[:,data.columns == "views"].astype(int)
|
||||
y_test = data.loc[:,data.columns == "likes"].astype(int)
|
||||
|
||||
min_val_sub = np.min(X_test)
|
||||
max_val_sub = np.max(X_test)
|
||||
X_test = (X_test - min_val_sub) / (max_val_sub - min_val_sub)
|
||||
print(min_val_sub)
|
||||
print(max_val_sub)
|
||||
|
||||
min_val_like = np.min(y_test)
|
||||
max_val_like = np.max(y_test)
|
||||
print(min_val_like)
|
||||
print(max_val_like)
|
||||
|
||||
prediction = model.predict(X_test)
|
||||
|
||||
prediction_denormalized = []
|
||||
for pred in prediction:
|
||||
denorm = pred[0] * (max_val_like[0] - min_val_like[0]) + min_val_like[0]
|
||||
prediction_denormalized.append(denorm)
|
||||
|
||||
f = open("predictions.txt", "w")
|
||||
for (pred, test) in zip(prediction_denormalized, y_test.values):
|
||||
f.write("predicted: %s expected: %s\n" % (str(pred), str(test[0])))
|
||||
|
||||
error = mean_squared_error(y_test, prediction_denormalized)
|
||||
print(error)
|
||||
|
||||
model.save('model')
|
Loading…
Reference in New Issue
Block a user