mlflow
Some checks failed
s434765-evaluation/pipeline/head There was a failure building this commit
s434765-training/pipeline/head There was a failure building this commit

This commit is contained in:
Karolina Oparczyk 2021-05-20 23:48:25 +02:00
parent 07479089e2
commit 92e2b57f21
3 changed files with 85 additions and 47 deletions

12
MLproject Normal file
View File

@ -0,0 +1,12 @@
name: tutorial
docker_env:
image: karopa/ium:27
entry_points:
main:
parameters:
epochs: {type: float, default: 30}
command: "python3 neural_network.py {epochs}"
test:
command: "python3 evaluate_network.py"

View File

@ -4,47 +4,50 @@ from sklearn.metrics import mean_squared_error
from tensorflow import keras
import matplotlib.pyplot as plt
model = keras.models.load_model('model')
data = pd.read_csv("data_dev", sep=',', error_bad_lines=False,
skip_blank_lines=True, nrows=527, names=["video_id", "last_trending_date",
"publish_date", "publish_hour", "category_id",
"channel_title", "views", "likes", "dislikes",
"comment_count"]).dropna()
X_test = data.loc[:, data.columns == "views"].astype(int)
y_test = data.loc[:, data.columns == "likes"].astype(int)
min_val_sub = np.min(X_test)
max_val_sub = np.max(X_test)
X_test = (X_test - min_val_sub) / (max_val_sub - min_val_sub)
print(min_val_sub)
print(max_val_sub)
def evaluate_model():
model = keras.models.load_model('model')
data = pd.read_csv("data_dev", sep=',', error_bad_lines=False,
skip_blank_lines=True, nrows=527, names=["video_id", "last_trending_date",
"publish_date", "publish_hour", "category_id",
"channel_title", "views", "likes", "dislikes",
"comment_count"]).dropna()
X_test = data.loc[:, data.columns == "views"].astype(int)
y_test = data.loc[:, data.columns == "likes"].astype(int)
min_val_like = np.min(y_test)
max_val_like = np.max(y_test)
print(min_val_like)
print(max_val_like)
min_val_sub = np.min(X_test)
max_val_sub = np.max(X_test)
X_test = (X_test - min_val_sub) / (max_val_sub - min_val_sub)
print(min_val_sub)
print(max_val_sub)
prediction = model.predict(X_test)
min_val_like = np.min(y_test)
max_val_like = np.max(y_test)
print(min_val_like)
print(max_val_like)
prediction_denormalized = []
for pred in prediction:
denorm = pred[0] * (max_val_like[0] - min_val_like[0]) + min_val_like[0]
prediction_denormalized.append(denorm)
prediction = model.predict(X_test)
f = open("predictions.txt", "w")
for (pred, test) in zip(prediction_denormalized, y_test.values):
f.write("predicted: %s expected: %s\n" % (str(pred), str(test[0])))
prediction_denormalized = []
for pred in prediction:
denorm = pred[0] * (max_val_like[0] - min_val_like[0]) + min_val_like[0]
prediction_denormalized.append(denorm)
error = mean_squared_error(y_test, prediction_denormalized)
print(error)
f = open("predictions.txt", "w")
for (pred, test) in zip(prediction_denormalized, y_test.values):
f.write("predicted: %s expected: %s\n" % (str(pred), str(test[0])))
with open("rmse.txt", "a") as file:
file.write(str(error) + "\n")
error = mean_squared_error(y_test, prediction_denormalized)
print(error)
with open("rmse.txt", "r") as file:
lines = file.readlines()
plt.plot(range(len(lines)), [line[:-2] for line in lines])
plt.tight_layout()
plt.ylabel('RMSE')
plt.xlabel('evaluation no')
plt.savefig('evaluation.png')
with open("rmse.txt", "a") as file:
file.write(str(error) + "\n")
with open("rmse.txt", "r") as file:
lines = file.readlines()
plt.plot(range(len(lines)), [line[:-2] for line in lines])
plt.tight_layout()
plt.ylabel('RMSE')
plt.xlabel('evaluation no')
plt.savefig('evaluation.png')
return error

View File

@ -1,9 +1,24 @@
import warnings
import pandas as pd
import numpy as np
from sklearn.metrics import mean_squared_error
from tensorflow import keras
import sys
import mlflow.sklearn
import logging
from evaluate_network import evaluate_model
logging.basicConfig(level=logging.WARN)
logger = logging.getLogger(__name__)
mlflow.set_tracking_uri("http://localhost:5000")
mlflow.set_experiment("s434765")
warnings.filterwarnings("ignore")
np.random.seed(40)
def normalize_data(data):
return (data - np.min(data)) / (np.max(data) - np.min(data))
@ -29,17 +44,25 @@ y = (y - min_val_like) / (max_val_like - min_val_like)
print(min_val_like)
print(max_val_like)
with mlflow.start_run() as run:
print("MLflow run experiment_id: {0}".format(run.info.experiment_id))
print("MLflow run artifact_uri: {0}".format(run.info.artifact_uri))
model = keras.Sequential([
keras.layers.Dense(512,input_dim = X.shape[1], activation='relu'),
keras.layers.Dense(256, activation='relu'),
keras.layers.Dense(256, activation='relu'),
keras.layers.Dense(128, activation='relu'),
keras.layers.Dense(1,activation='linear'),
])
mlflow.keras.autolog()
mlflow.log_param("epochs", int(sys.argv[1]))
model = keras.Sequential([
keras.layers.Dense(512,input_dim = X.shape[1], activation='relu'),
keras.layers.Dense(256, activation='relu'),
keras.layers.Dense(256, activation='relu'),
keras.layers.Dense(128, activation='relu'),
keras.layers.Dense(1,activation='linear'),
])
model.compile(loss='mean_absolute_error', optimizer="Adam", metrics=['mean_absolute_error'])
model.compile(loss='mean_absolute_error', optimizer="Adam", metrics=['mean_absolute_error'])
model.fit(X, y, epochs=int(sys.argv[1]), validation_split = 0.3)
model.fit(X, y, epochs=int(sys.argv[1]), validation_split = 0.3)
model.save('model')
model.save('model')
error = evaluate_model()
mlflow.log_metric("rmse", error)