mlflow save model
All checks were successful
s434765-training/pipeline/head This commit looks good
s434765-evaluation/pipeline/head This commit looks good

This commit is contained in:
Karolina Oparczyk 2021-05-23 22:52:58 +02:00
parent c68e8d94e6
commit 933d80f25e
4 changed files with 39 additions and 3 deletions

29
JenkinsfileMLflow Normal file
View File

@ -0,0 +1,29 @@
node {
stage('Preparation') {
properties([
parameters([
buildSelector(defaultSelector: lastSuccessful(),
description: 'Which build to use for copying artifacts',
name: 'BUILD_SELECTOR')
])
]
)
}
stage('Clone repo') {
docker.image("karopa/ium:31").inside {
stage('Test') {
checkout([$class: 'GitSCM', branches: [[name: '*/mlflow']], doGenerateSubmoduleConfigurations: false, extensions: [], submoduleCfg: [], userRemoteConfigs: [[url: 'https://git.wmi.amu.edu.pl/s434765/ium_434765']]])
copyArtifacts fingerprintArtifacts: true, projectName: 's437622-training/master/', selector: buildParameter("BUILD_SELECTOR")
sh '''
#!/usr/bin/env bash
chmod 777 mlflow_partner.sh
rm -r model
./mlflow_partner.sh | tee output.txt
'''
archiveArtifacts 'output.txt'
}
}
}
}

View File

@ -16,7 +16,7 @@ node {
}
stage('Clone repo') {
/* try {*/ docker.image("karopa/ium:31").inside {
/* try {*/ docker.image("karopa/ium:32").inside {
stage('Test') {
checkout([$class: 'GitSCM', branches: [[name: '*/mlflow']], doGenerateSubmoduleConfigurations: false, extensions: [], submoduleCfg: [], userRemoteConfigs: [[url: 'https://git.wmi.amu.edu.pl/s434765/ium_434765']]])
copyArtifacts fingerprintArtifacts: true, projectName: 's434765-create-dataset', selector: buildParameter("BUILD_SELECTOR")
@ -25,7 +25,6 @@ node {
chmod 777 neural_network.sh
rm -r model
./neural_network.sh $EPOCHS | tee output.txt
mlflow run . -e main
'''
archiveArtifacts 'output.txt'
archiveArtifacts 'model/**/*.*'

4
mlflow_partner.py Normal file
View File

@ -0,0 +1,4 @@
from mlflow import keras
model = keras.load_model('saved_model.pb')
predict = model.predict([13, 1, 1500, 1500])

View File

@ -20,6 +20,7 @@ mlflow.set_experiment("s434765")
warnings.filterwarnings("ignore")
np.random.seed(40)
def normalize_data(data):
return (data - np.min(data)) / (np.max(data) - np.min(data))
@ -73,4 +74,7 @@ with mlflow.start_run() as run:
"channel_title", "views", "likes", "dislikes",
"comment_count"]).dropna()
X_test = data.loc[:, data.columns == "views"].astype(int)
mlflow.keras.save_model(model, "model", registered_model_name="model", signature=signature, input_example=X_test)
mlflow.keras.log_model(model, "youtube_model", registered_model_name="youtube_model", input_example=X_test,
signature=signature)
mlflow.keras.save_model(model, "youtube_model", registered_model_name="youtube_model", signature=signature,
input_example=X_test)