diff --git a/JenkinsfileNeural b/JenkinsfileNeural index 75d0496..dd93fd9 100644 --- a/JenkinsfileNeural +++ b/JenkinsfileNeural @@ -16,7 +16,7 @@ node { } stage('Clone repo') { - /* try {*/ docker.image("karopa/ium:27").inside { + /* try {*/ docker.image("karopa/ium:28").inside { stage('Test') { checkout([$class: 'GitSCM', branches: [[name: '*/master']], doGenerateSubmoduleConfigurations: false, extensions: [], submoduleCfg: [], userRemoteConfigs: [[url: 'https://git.wmi.amu.edu.pl/s434765/ium_434765']]]) copyArtifacts fingerprintArtifacts: true, projectName: 's434765-create-dataset', selector: buildParameter("BUILD_SELECTOR") diff --git a/neural_network.py b/neural_network.py index fbf75c1..5e437c1 100644 --- a/neural_network.py +++ b/neural_network.py @@ -5,8 +5,8 @@ import numpy as np from tensorflow import keras import sys -import mlflow.sklearn - +import mlflow +import mlflow.models import logging from evaluate_network import evaluate_model @@ -66,3 +66,11 @@ with mlflow.start_run() as run: error = evaluate_model() mlflow.log_metric("rmse", error) + signature = mlflow.models.signature.infer_signature(X, model.predict(y)) + data = pd.read_csv("data_dev", sep=',', error_bad_lines=False, + skip_blank_lines=True, nrows=527, names=["video_id", "last_trending_date", + "publish_date", "publish_hour", "category_id", + "channel_title", "views", "likes", "dislikes", + "comment_count"]).dropna() + X_test = data.loc[:, data.columns == "views"].astype(int) + mlflow.keras.save_model(model, "model", signature=signature, input_example=X_test)