Compare commits
No commits in common. "master" and "stats" have entirely different histories.
19
Dockerfile
19
Dockerfile
@ -1,19 +0,0 @@
|
||||
FROM ubuntu:latest
|
||||
RUN apt clean
|
||||
RUN apt update
|
||||
RUN apt install -y python3
|
||||
RUN apt install -y python3-pip
|
||||
RUN apt install -y unzip
|
||||
RUN pip3 install pandas
|
||||
RUN pip3 install kaggle
|
||||
RUN pip3 install tensorflow
|
||||
RUN pip3 install sklearn
|
||||
RUN pip3 install pymongo
|
||||
RUN pip3 install sacred
|
||||
RUN pip3 install GitPython
|
||||
COPY ./data_train ./
|
||||
COPY ./data_dev ./
|
||||
COPY ./neural_network.sh ./
|
||||
COPY ./neural_network.py ./
|
||||
RUN mkdir /.kaggle
|
||||
RUN chmod -R 777 /.kaggle
|
45
Jenkinsfile
vendored
45
Jenkinsfile
vendored
@ -1,45 +0,0 @@
|
||||
node {
|
||||
stage('Preparation') {
|
||||
|
||||
properties([
|
||||
parameters([
|
||||
string(defaultValue: 'karopa',
|
||||
description: 'Kaggle username',
|
||||
name: 'KAGGLE_USERNAME',
|
||||
trim: false),
|
||||
password(defaultValue: '',
|
||||
description: 'Kaggle token',
|
||||
name: 'KAGGLE_KEY'),
|
||||
string(defaultValue: '5000',
|
||||
description: 'Data cutoff',
|
||||
name: 'CUTOFF',
|
||||
trim: false)
|
||||
])
|
||||
]
|
||||
)
|
||||
|
||||
}
|
||||
stage('Clone repo') {
|
||||
checkout scm
|
||||
def testImage = docker.build("karopa/ium:02")
|
||||
testImage.inside {
|
||||
withEnv(["KAGGLE_USERNAME=${params.KAGGLE_USERNAME}", "KAGGLE_KEY=${params.KAGGLE_KEY}"]){
|
||||
checkout([$class: 'GitSCM', branches: [[name: '*/master']], doGenerateSubmoduleConfigurations: false, extensions: [], submoduleCfg: [], userRemoteConfigs: [[url: 'https://git.wmi.amu.edu.pl/s434765/ium_434765']]])
|
||||
sh '''
|
||||
#!/usr/bin/env bash
|
||||
chmod 777 get_data.sh
|
||||
./get_data.sh $CUTOFF | tee output.txt
|
||||
'''
|
||||
archiveArtifacts "data_dev"
|
||||
archiveArtifacts "data_shuf"
|
||||
archiveArtifacts "data_test"
|
||||
archiveArtifacts "data_train"
|
||||
archiveArtifacts "output.txt"
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
stage ("build training") {
|
||||
build 's434765-training/master/'
|
||||
}
|
||||
}
|
@ -1,50 +0,0 @@
|
||||
node {
|
||||
stage('Preparation') {
|
||||
|
||||
properties([
|
||||
copyArtifactPermission('s434765-training'),
|
||||
parameters([
|
||||
buildSelector(defaultSelector: lastSuccessful(),
|
||||
description: 'Which build to use for copying artifacts',
|
||||
name: 'BUILD_SELECTOR'),
|
||||
string(defaultValue: '30',
|
||||
description: 'Amount of epochs',
|
||||
name: 'EPOCHS',
|
||||
trim: false)
|
||||
])
|
||||
]
|
||||
)
|
||||
|
||||
}
|
||||
stage('Clone repo') {
|
||||
/*try {*/ docker.image("karopa/ium:27").inside {
|
||||
stage('Test') {
|
||||
checkout([$class: 'GitSCM', branches: [[name: '*/master']], doGenerateSubmoduleConfigurations: false, extensions: [], submoduleCfg: [], userRemoteConfigs: [[url: 'https://git.wmi.amu.edu.pl/s434765/ium_434765']]])
|
||||
copyArtifacts fingerprintArtifacts: true, projectName: 's434765-create-dataset', selector: buildParameter("BUILD_SELECTOR")
|
||||
sh '''
|
||||
#!/usr/bin/env bash
|
||||
chmod 777 neural_network.sh
|
||||
./neural_network.sh $EPOCHS | tee output.txt
|
||||
'''
|
||||
archiveArtifacts 'output.txt'
|
||||
archiveArtifacts 'model/**/*.*'
|
||||
archiveArtifacts 'my_runs/**/*.*'
|
||||
}
|
||||
/* emailext body: 'Successful build',
|
||||
subject: "s434765",
|
||||
to: "26ab8f35.uam.onmicrosoft.com@emea.teams.ms"
|
||||
}
|
||||
|
||||
}
|
||||
catch (e) {
|
||||
emailext body: 'Failed build',
|
||||
subject: "s434765",
|
||||
to: "26ab8f35.uam.onmicrosoft.com@emea.teams.ms"
|
||||
throw e*/
|
||||
}
|
||||
}
|
||||
/* stage ("build evaluation") {
|
||||
build 's434765-evaluation/evaluation/'
|
||||
|
||||
}*/
|
||||
}
|
@ -12,17 +12,13 @@ node {
|
||||
|
||||
}
|
||||
stage('Clone repo') {
|
||||
docker.image("karopa/ium:03").inside {
|
||||
stage('Test') {
|
||||
checkout([$class: 'GitSCM', branches: [[name: '*/master']], doGenerateSubmoduleConfigurations: false, extensions: [], submoduleCfg: [], userRemoteConfigs: [[url: 'https://git.wmi.amu.edu.pl/s434765/ium_434765']]])
|
||||
copyArtifacts fingerprintArtifacts: true, projectName: 's434765-create-dataset', selector: buildParameter("BUILD_SELECTOR")
|
||||
checkout([$class: 'GitSCM', branches: [[name: '*/stats']], doGenerateSubmoduleConfigurations: false, extensions: [], submoduleCfg: [], userRemoteConfigs: [[url: 'https://git.wmi.amu.edu.pl/s434765/ium_434765']]])
|
||||
copyArtifacts filter: 'data_shuf', fingerprintArtifacts: true, projectName: 's434765-create-dataset', selector: buildParameter("BUILD_SELECTOR")
|
||||
sh '''
|
||||
#!/usr/bin/env bash
|
||||
chmod 777 get_stats.sh
|
||||
./get_stats.sh | tee output.txt
|
||||
chmod 777 get_stats_simple.sh
|
||||
./get_stats_simple.sh | tee output.txt
|
||||
'''
|
||||
archiveArtifacts 'output.txt'
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
1088
data_train
1088
data_train
File diff suppressed because one or more lines are too long
145
environment.yml
145
environment.yml
@ -1,145 +0,0 @@
|
||||
name: myenv
|
||||
channels:
|
||||
- defaults
|
||||
dependencies:
|
||||
- _tflow_select=2.3.0=eigen
|
||||
- absl-py=0.12.0=py38haa95532_0
|
||||
- aiohttp=3.7.4=py38h2bbff1b_1
|
||||
- astor=0.8.1=py38haa95532_0
|
||||
- astunparse=1.6.3=py_0
|
||||
- async-timeout=3.0.1=py38haa95532_0
|
||||
- attrs=21.2.0=pyhd3eb1b0_0
|
||||
- blas=1.0=mkl
|
||||
- blinker=1.4=py38haa95532_0
|
||||
- brotlipy=0.7.0=py38h2bbff1b_1003
|
||||
- ca-certificates=2021.5.25=haa95532_1
|
||||
- cachetools=4.2.2=pyhd3eb1b0_0
|
||||
- certifi=2020.12.5=py38haa95532_0
|
||||
- cffi=1.14.5=py38hcd4344a_0
|
||||
- click=8.0.1=pyhd3eb1b0_0
|
||||
- coverage=5.5=py38h2bbff1b_2
|
||||
- cryptography=2.9.2=py38h7a1dbc1_0
|
||||
- cycler=0.10.0=py38_0
|
||||
- cython=0.29.23=py38hd77b12b_0
|
||||
- freetype=2.10.4=hd328e21_0
|
||||
- gast=0.4.0=py_0
|
||||
- google-auth=1.30.1=pyhd3eb1b0_0
|
||||
- google-auth-oauthlib=0.4.1=py_2
|
||||
- google-pasta=0.2.0=py_0
|
||||
- grpcio=1.36.1=py38hc60d5dd_1
|
||||
- h5py=2.10.0=py38h5e291fa_0
|
||||
- hdf5=1.10.4=h7ebc959_0
|
||||
- icc_rt=2019.0.0=h0cc432a_1
|
||||
- icu=58.2=ha925a31_3
|
||||
- idna=2.10=pyhd3eb1b0_0
|
||||
- importlib-metadata=3.10.0=py38haa95532_0
|
||||
- intel-openmp=2021.2.0=haa95532_616
|
||||
- jpeg=9b=hb83a4c4_2
|
||||
- keras-applications=1.0.8=py_1
|
||||
- keras-preprocessing=1.1.2=pyhd3eb1b0_0
|
||||
- kiwisolver=1.3.1=py38hd77b12b_0
|
||||
- libpng=1.6.37=h2a8f88b_0
|
||||
- libprotobuf=3.14.0=h23ce68f_0
|
||||
- libtiff=4.2.0=hd0e1b90_0
|
||||
- lz4-c=1.9.3=h2bbff1b_0
|
||||
- markdown=3.3.4=py38haa95532_0
|
||||
- matplotlib=3.3.4=py38haa95532_0
|
||||
- matplotlib-base=3.3.4=py38h49ac443_0
|
||||
- mkl=2021.2.0=haa95532_296
|
||||
- mkl-service=2.3.0=py38h2bbff1b_1
|
||||
- mkl_fft=1.3.0=py38h277e83a_2
|
||||
- mkl_random=1.2.1=py38hf11a4ad_2
|
||||
- multidict=5.1.0=py38h2bbff1b_2
|
||||
- numpy=1.20.2=py38ha4e8547_0
|
||||
- numpy-base=1.20.2=py38hc2deb75_0
|
||||
- oauthlib=3.1.0=py_0
|
||||
- olefile=0.46=py_0
|
||||
- openssl=1.1.1k=h2bbff1b_0
|
||||
- opt_einsum=3.3.0=pyhd3eb1b0_1
|
||||
- pandas=1.2.4=py38hd77b12b_0
|
||||
- pillow=8.2.0=py38h4fa10fc_0
|
||||
- pip=21.1.1=py38haa95532_0
|
||||
- protobuf=3.14.0=py38hd77b12b_1
|
||||
- pyasn1=0.4.8=py_0
|
||||
- pyasn1-modules=0.2.8=py_0
|
||||
- pycparser=2.20=py_2
|
||||
- pyjwt=2.1.0=py38haa95532_0
|
||||
- pyopenssl=20.0.1=pyhd3eb1b0_1
|
||||
- pyparsing=2.4.7=pyhd3eb1b0_0
|
||||
- pyqt=5.9.2=py38ha925a31_4
|
||||
- pyreadline=2.1=py38_1
|
||||
- pysocks=1.7.1=py38haa95532_0
|
||||
- python=3.8.10=hdbf39b2_7
|
||||
- python-dateutil=2.8.1=pyhd3eb1b0_0
|
||||
- pytz=2021.1=pyhd3eb1b0_0
|
||||
- qt=5.9.7=vc14h73c81de_0
|
||||
- requests=2.25.1=pyhd3eb1b0_0
|
||||
- requests-oauthlib=1.3.0=py_0
|
||||
- rsa=4.7.2=pyhd3eb1b0_1
|
||||
- scipy=1.6.2=py38h66253e8_1
|
||||
- setuptools=52.0.0=py38haa95532_0
|
||||
- sip=4.19.13=py38ha925a31_0
|
||||
- six=1.15.0=py38haa95532_0
|
||||
- sqlite=3.35.4=h2bbff1b_0
|
||||
- tensorboard=2.5.0=py_0
|
||||
- tensorboard-plugin-wit=1.6.0=py_0
|
||||
- tensorflow=2.3.0=mkl_py38h8c0d9a2_0
|
||||
- tensorflow-base=2.3.0=eigen_py38h75a453f_0
|
||||
- tensorflow-estimator=2.5.0=pyh7b7c402_0
|
||||
- termcolor=1.1.0=py38haa95532_1
|
||||
- tk=8.6.10=he774522_0
|
||||
- tornado=6.1=py38h2bbff1b_0
|
||||
- typing-extensions=3.7.4.3=hd3eb1b0_0
|
||||
- typing_extensions=3.7.4.3=pyh06a4308_0
|
||||
- vc=14.2=h21ff451_1
|
||||
- vs2015_runtime=14.27.29016=h5e58377_2
|
||||
- wheel=0.36.2=pyhd3eb1b0_0
|
||||
- win_inet_pton=1.1.0=py38haa95532_0
|
||||
- wincertstore=0.2=py38_0
|
||||
- wrapt=1.12.1=py38he774522_1
|
||||
- xz=5.2.5=h62dcd97_0
|
||||
- yarl=1.6.3=py38h2bbff1b_0
|
||||
- zipp=3.4.1=pyhd3eb1b0_0
|
||||
- zlib=1.2.11=h62dcd97_4
|
||||
- zstd=1.4.9=h19a0ad4_0
|
||||
- pip:
|
||||
- alembic==1.4.1
|
||||
- chardet==4.0.0
|
||||
- cloudpickle==1.6.0
|
||||
- colorama==0.4.4
|
||||
- databricks-cli==0.14.3
|
||||
- docker==5.0.0
|
||||
- entrypoints==0.3
|
||||
- flask==2.0.1
|
||||
- gitdb==4.0.7
|
||||
- gitpython==3.1.17
|
||||
- greenlet==1.1.0
|
||||
- itsdangerous==2.0.1
|
||||
- jinja2==3.0.1
|
||||
- joblib==1.0.1
|
||||
- kaggle==1.5.12
|
||||
- mako==1.1.4
|
||||
- markupsafe==2.0.1
|
||||
- mlflow==1.17.0
|
||||
- prometheus-client==0.10.1
|
||||
- prometheus-flask-exporter==0.18.2
|
||||
- python-editor==1.0.4
|
||||
- python-slugify==5.0.2
|
||||
- pywin32==227
|
||||
- pyyaml==5.4.1
|
||||
- querystring-parser==1.2.4
|
||||
- scikit-learn==0.24.2
|
||||
- sklearn==0.0
|
||||
- smmap==4.0.0
|
||||
- sqlalchemy==1.4.17
|
||||
- sqlparse==0.4.1
|
||||
- tabulate==0.8.9
|
||||
- tensorboard-data-server==0.6.1
|
||||
- text-unidecode==1.3
|
||||
- threadpoolctl==2.1.0
|
||||
- tqdm==4.61.0
|
||||
- urllib3==1.26.5
|
||||
- waitress==2.0.0
|
||||
- websocket-client==1.0.1
|
||||
- werkzeug==2.0.1
|
||||
prefix: C:\Users\karol\anaconda3\envs\myenv
|
BIN
evaluation.png
BIN
evaluation.png
Binary file not shown.
Before Width: | Height: | Size: 28 KiB |
16
get_data.sh
Executable file → Normal file
16
get_data.sh
Executable file → Normal file
@ -1,14 +1,20 @@
|
||||
#!/bin/bash
|
||||
rm USvideos_modified.csv
|
||||
if kaggle datasets download -d sgonkaggle/youtube-trend-with-subscriber && unzip youtube-trend-with-subscriber.zip; then
|
||||
head -n 2 USvideos_modified.csv
|
||||
grep -v -e "^$" - USvideos_modified.csv
|
||||
COUNT=$(wc -l "USvideos_modified.csv")
|
||||
echo "${COUNT}"
|
||||
head -n -1 "USvideos_modified.csv" | shuf > "data_shuf"
|
||||
head -n 544 "data_shuf" > "data_test"
|
||||
head -n 1088 "data_shuf" | tail -n 544 > "data_dev"
|
||||
head -n 5441 "data_shuf" | tail -n 4352 > "data_train"
|
||||
tr '\n' '' < "data_dev"
|
||||
sed '/^$/d' "data_dev"
|
||||
python3 get_data.py USvideos_modified.csv
|
||||
head -n +1089 "data_shuf" > "data_train"
|
||||
echo "Shuffled dataset"
|
||||
wc -l "data_shuf"
|
||||
echo "Test dataset"
|
||||
wc -l "data_test"
|
||||
echo "Dev dataset"
|
||||
wc -l "data_dev"
|
||||
echo "Train dataset"
|
||||
wc -l "data_train"
|
||||
python main.py USvideos_modified.csv
|
||||
fi
|
@ -1,9 +0,0 @@
|
||||
#!/bin/bash
|
||||
echo "Shuffled dataset"
|
||||
wc -l "data_shuf"
|
||||
echo "Test dataset"
|
||||
wc -l "data_test"
|
||||
echo "Dev dataset"
|
||||
wc -l "data_dev"
|
||||
echo "Train dataset"
|
||||
wc -l "data_train"
|
File diff suppressed because one or more lines are too long
Binary file not shown.
Binary file not shown.
Binary file not shown.
@ -1,4 +0,0 @@
|
||||
{
|
||||
"epochs_amount": 30,
|
||||
"seed": 511320143
|
||||
}
|
@ -1,79 +0,0 @@
|
||||
views 0
|
||||
dtype: int32
|
||||
views 488
|
||||
dtype: int32
|
||||
likes 1
|
||||
dtype: int32
|
||||
likes 3345
|
||||
dtype: int32
|
||||
Epoch 1/30
|
||||
1/19 [>.............................] - ETA: 6s - loss: 0.0834 - mean_absolute_error: 0.0834
19/19 [==============================] - 1s 10ms/step - loss: 0.0679 - mean_absolute_error: 0.0679 - val_loss: 0.0670 - val_mean_absolute_error: 0.0670
|
||||
Epoch 2/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.1142 - mean_absolute_error: 0.1142
19/19 [==============================] - 0s 2ms/step - loss: 0.0657 - mean_absolute_error: 0.0657 - val_loss: 0.0530 - val_mean_absolute_error: 0.0530
|
||||
Epoch 3/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0940 - mean_absolute_error: 0.0940
19/19 [==============================] - 0s 2ms/step - loss: 0.0608 - mean_absolute_error: 0.0608 - val_loss: 0.0600 - val_mean_absolute_error: 0.0600
|
||||
Epoch 4/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0524 - mean_absolute_error: 0.0524
19/19 [==============================] - 0s 2ms/step - loss: 0.0521 - mean_absolute_error: 0.0521 - val_loss: 0.0541 - val_mean_absolute_error: 0.0541
|
||||
Epoch 5/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0440 - mean_absolute_error: 0.0440
19/19 [==============================] - 0s 2ms/step - loss: 0.0518 - mean_absolute_error: 0.0518 - val_loss: 0.0541 - val_mean_absolute_error: 0.0541
|
||||
Epoch 6/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0576 - mean_absolute_error: 0.0576
19/19 [==============================] - 0s 2ms/step - loss: 0.0579 - mean_absolute_error: 0.0579 - val_loss: 0.0523 - val_mean_absolute_error: 0.0523
|
||||
Epoch 7/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0310 - mean_absolute_error: 0.0310
19/19 [==============================] - 0s 2ms/step - loss: 0.0497 - mean_absolute_error: 0.0497 - val_loss: 0.0523 - val_mean_absolute_error: 0.0523
|
||||
Epoch 8/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0628 - mean_absolute_error: 0.0628
19/19 [==============================] - 0s 2ms/step - loss: 0.0531 - mean_absolute_error: 0.0531 - val_loss: 0.0551 - val_mean_absolute_error: 0.0551
|
||||
Epoch 9/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0425 - mean_absolute_error: 0.0425
19/19 [==============================] - 0s 2ms/step - loss: 0.0543 - mean_absolute_error: 0.0543 - val_loss: 0.0527 - val_mean_absolute_error: 0.0527
|
||||
Epoch 10/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0560 - mean_absolute_error: 0.0560
19/19 [==============================] - 0s 2ms/step - loss: 0.0549 - mean_absolute_error: 0.0549 - val_loss: 0.0525 - val_mean_absolute_error: 0.0525
|
||||
Epoch 11/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0391 - mean_absolute_error: 0.0391
19/19 [==============================] - 0s 2ms/step - loss: 0.0520 - mean_absolute_error: 0.0520 - val_loss: 0.0556 - val_mean_absolute_error: 0.0556
|
||||
Epoch 12/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0417 - mean_absolute_error: 0.0417
19/19 [==============================] - 0s 2ms/step - loss: 0.0578 - mean_absolute_error: 0.0578 - val_loss: 0.0522 - val_mean_absolute_error: 0.0522
|
||||
Epoch 13/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0834 - mean_absolute_error: 0.0834
19/19 [==============================] - 0s 2ms/step - loss: 0.0605 - mean_absolute_error: 0.0605 - val_loss: 0.0532 - val_mean_absolute_error: 0.0532
|
||||
Epoch 14/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0430 - mean_absolute_error: 0.0430
19/19 [==============================] - 0s 2ms/step - loss: 0.0582 - mean_absolute_error: 0.0582 - val_loss: 0.0526 - val_mean_absolute_error: 0.0526
|
||||
Epoch 15/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0506 - mean_absolute_error: 0.0506
19/19 [==============================] - 0s 2ms/step - loss: 0.0512 - mean_absolute_error: 0.0512 - val_loss: 0.0533 - val_mean_absolute_error: 0.0533
|
||||
Epoch 16/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0402 - mean_absolute_error: 0.0402
19/19 [==============================] - 0s 2ms/step - loss: 0.0514 - mean_absolute_error: 0.0514 - val_loss: 0.0537 - val_mean_absolute_error: 0.0537
|
||||
Epoch 17/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0247 - mean_absolute_error: 0.0247
19/19 [==============================] - 0s 2ms/step - loss: 0.0463 - mean_absolute_error: 0.0463 - val_loss: 0.0519 - val_mean_absolute_error: 0.0519
|
||||
Epoch 18/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0401 - mean_absolute_error: 0.0401
19/19 [==============================] - 0s 2ms/step - loss: 0.0537 - mean_absolute_error: 0.0537 - val_loss: 0.0568 - val_mean_absolute_error: 0.0568
|
||||
Epoch 19/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0930 - mean_absolute_error: 0.0930
19/19 [==============================] - 0s 2ms/step - loss: 0.0534 - mean_absolute_error: 0.0534 - val_loss: 0.0523 - val_mean_absolute_error: 0.0523
|
||||
Epoch 20/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0631 - mean_absolute_error: 0.0631
19/19 [==============================] - 0s 2ms/step - loss: 0.0577 - mean_absolute_error: 0.0577 - val_loss: 0.0532 - val_mean_absolute_error: 0.0532
|
||||
Epoch 21/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0524 - mean_absolute_error: 0.0524
19/19 [==============================] - 0s 2ms/step - loss: 0.0538 - mean_absolute_error: 0.0538 - val_loss: 0.0540 - val_mean_absolute_error: 0.0540
|
||||
Epoch 22/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0435 - mean_absolute_error: 0.0435
19/19 [==============================] - 0s 2ms/step - loss: 0.0510 - mean_absolute_error: 0.0510 - val_loss: 0.0594 - val_mean_absolute_error: 0.0594
|
||||
Epoch 23/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0324 - mean_absolute_error: 0.0324
19/19 [==============================] - 0s 2ms/step - loss: 0.0573 - mean_absolute_error: 0.0573 - val_loss: 0.0537 - val_mean_absolute_error: 0.0537
|
||||
Epoch 24/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0354 - mean_absolute_error: 0.0354
19/19 [==============================] - 0s 2ms/step - loss: 0.0510 - mean_absolute_error: 0.0510 - val_loss: 0.0546 - val_mean_absolute_error: 0.0546
|
||||
Epoch 25/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0474 - mean_absolute_error: 0.0474
19/19 [==============================] - 0s 2ms/step - loss: 0.0539 - mean_absolute_error: 0.0539 - val_loss: 0.0525 - val_mean_absolute_error: 0.0525
|
||||
Epoch 26/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0928 - mean_absolute_error: 0.0928
19/19 [==============================] - 0s 2ms/step - loss: 0.0612 - mean_absolute_error: 0.0612 - val_loss: 0.0540 - val_mean_absolute_error: 0.0540
|
||||
Epoch 27/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0582 - mean_absolute_error: 0.0582
19/19 [==============================] - 0s 2ms/step - loss: 0.0535 - mean_absolute_error: 0.0535 - val_loss: 0.0548 - val_mean_absolute_error: 0.0548
|
||||
Epoch 28/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0415 - mean_absolute_error: 0.0415
19/19 [==============================] - 0s 2ms/step - loss: 0.0511 - mean_absolute_error: 0.0511 - val_loss: 0.0533 - val_mean_absolute_error: 0.0533
|
||||
Epoch 29/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0491 - mean_absolute_error: 0.0491
19/19 [==============================] - 0s 3ms/step - loss: 0.0532 - mean_absolute_error: 0.0532 - val_loss: 0.0528 - val_mean_absolute_error: 0.0528
|
||||
Epoch 30/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0475 - mean_absolute_error: 0.0475
19/19 [==============================] - 0s 2ms/step - loss: 0.0529 - mean_absolute_error: 0.0529 - val_loss: 0.0529 - val_mean_absolute_error: 0.0529
|
||||
views 1
|
||||
dtype: int32
|
||||
views 488
|
||||
dtype: int32
|
||||
likes 1
|
||||
dtype: int32
|
||||
likes 3345
|
||||
dtype: int32
|
||||
114882.99377127373
|
||||
114882.99377127373
|
||||
114882.99377127373
|
@ -1,3 +0,0 @@
|
||||
{
|
||||
"prepare_message_ts": "2021-05-20 21:59:18.264490"
|
||||
}
|
@ -1 +0,0 @@
|
||||
{}
|
@ -1,87 +0,0 @@
|
||||
{
|
||||
"artifacts": [],
|
||||
"command": "my_main",
|
||||
"experiment": {
|
||||
"base_dir": "C:\\Users\\karol\\PycharmProjects\\ium_434765",
|
||||
"dependencies": [
|
||||
"numpy==1.19.5",
|
||||
"pandas==1.2.4",
|
||||
"sacred==0.8.2",
|
||||
"tensorflow==2.5.0rc1"
|
||||
],
|
||||
"mainfile": "neural_network.py",
|
||||
"name": "sacred_scopes",
|
||||
"repositories": [
|
||||
{
|
||||
"commit": "07479089e2d0bd86c8b0dd3bb005f7178078cc34",
|
||||
"dirty": true,
|
||||
"url": "https://git.wmi.amu.edu.pl/s434765/ium_434765.git"
|
||||
},
|
||||
{
|
||||
"commit": "07479089e2d0bd86c8b0dd3bb005f7178078cc34",
|
||||
"dirty": true,
|
||||
"url": "https://git.wmi.amu.edu.pl/s434765/ium_434765.git"
|
||||
}
|
||||
],
|
||||
"sources": [
|
||||
[
|
||||
"evaluate_network.py",
|
||||
"_sources\\evaluate_network_6bc39a6cabbc78720ddbbd5b23f51cc3.py"
|
||||
],
|
||||
[
|
||||
"neural_network.py",
|
||||
"_sources\\neural_network_cdaa9eab635a60c87899a6eaac9e398e.py"
|
||||
]
|
||||
]
|
||||
},
|
||||
"heartbeat": "2021-05-20T19:59:22.263859",
|
||||
"host": {
|
||||
"ENV": {},
|
||||
"cpu": "Unknown",
|
||||
"gpus": {
|
||||
"driver_version": "452.06",
|
||||
"gpus": [
|
||||
{
|
||||
"model": "GeForce GTX 1650 Ti",
|
||||
"persistence_mode": false,
|
||||
"total_memory": 4096
|
||||
}
|
||||
]
|
||||
},
|
||||
"hostname": "DESKTOP-5PRPHO6",
|
||||
"os": [
|
||||
"Windows",
|
||||
"Windows-10-10.0.19041-SP0"
|
||||
],
|
||||
"python_version": "3.9.2"
|
||||
},
|
||||
"meta": {
|
||||
"command": "my_main",
|
||||
"options": {
|
||||
"--beat-interval": null,
|
||||
"--capture": null,
|
||||
"--comment": null,
|
||||
"--debug": false,
|
||||
"--enforce_clean": false,
|
||||
"--file_storage": null,
|
||||
"--force": false,
|
||||
"--help": false,
|
||||
"--loglevel": null,
|
||||
"--mongo_db": null,
|
||||
"--name": null,
|
||||
"--pdb": false,
|
||||
"--print-config": false,
|
||||
"--priority": null,
|
||||
"--queue": false,
|
||||
"--s3": null,
|
||||
"--sql": null,
|
||||
"--tiny_db": null,
|
||||
"--unobserved": false
|
||||
}
|
||||
},
|
||||
"resources": [],
|
||||
"result": null,
|
||||
"start_time": "2021-05-20T19:59:18.258489",
|
||||
"status": "COMPLETED",
|
||||
"stop_time": "2021-05-20T19:59:22.263859"
|
||||
}
|
@ -1,4 +0,0 @@
|
||||
{
|
||||
"epochs_amount": 30,
|
||||
"seed": 535480662
|
||||
}
|
@ -1,78 +0,0 @@
|
||||
views 0
|
||||
dtype: int32
|
||||
views 488
|
||||
dtype: int32
|
||||
likes 1
|
||||
dtype: int32
|
||||
likes 3345
|
||||
dtype: int32
|
||||
Epoch 1/30
|
||||
1/19 [>.............................] - ETA: 6s - loss: 0.1168 - mean_absolute_error: 0.1168
19/19 [==============================] - 1s 10ms/step - loss: 0.0788 - mean_absolute_error: 0.0788 - val_loss: 0.0639 - val_mean_absolute_error: 0.0639
|
||||
Epoch 2/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0699 - mean_absolute_error: 0.0699
19/19 [==============================] - 0s 2ms/step - loss: 0.0622 - mean_absolute_error: 0.0622 - val_loss: 0.0589 - val_mean_absolute_error: 0.0589
|
||||
Epoch 3/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0547 - mean_absolute_error: 0.0547
19/19 [==============================] - 0s 2ms/step - loss: 0.0566 - mean_absolute_error: 0.0566 - val_loss: 0.0542 - val_mean_absolute_error: 0.0542
|
||||
Epoch 4/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0351 - mean_absolute_error: 0.0351
19/19 [==============================] - 0s 2ms/step - loss: 0.0534 - mean_absolute_error: 0.0534 - val_loss: 0.0524 - val_mean_absolute_error: 0.0524
|
||||
Epoch 5/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0436 - mean_absolute_error: 0.0436
19/19 [==============================] - 0s 2ms/step - loss: 0.0562 - mean_absolute_error: 0.0562 - val_loss: 0.0560 - val_mean_absolute_error: 0.0560
|
||||
Epoch 6/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0474 - mean_absolute_error: 0.0474
19/19 [==============================] - 0s 2ms/step - loss: 0.0513 - mean_absolute_error: 0.0513 - val_loss: 0.0533 - val_mean_absolute_error: 0.0533
|
||||
Epoch 7/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0714 - mean_absolute_error: 0.0714
19/19 [==============================] - 0s 2ms/step - loss: 0.0562 - mean_absolute_error: 0.0562 - val_loss: 0.0519 - val_mean_absolute_error: 0.0519
|
||||
Epoch 8/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0567 - mean_absolute_error: 0.0567
19/19 [==============================] - 0s 2ms/step - loss: 0.0535 - mean_absolute_error: 0.0535 - val_loss: 0.0526 - val_mean_absolute_error: 0.0526
|
||||
Epoch 9/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0472 - mean_absolute_error: 0.0472
19/19 [==============================] - 0s 2ms/step - loss: 0.0571 - mean_absolute_error: 0.0571 - val_loss: 0.0559 - val_mean_absolute_error: 0.0559
|
||||
Epoch 10/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0634 - mean_absolute_error: 0.0634
19/19 [==============================] - 0s 2ms/step - loss: 0.0528 - mean_absolute_error: 0.0528 - val_loss: 0.0527 - val_mean_absolute_error: 0.0527
|
||||
Epoch 11/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0412 - mean_absolute_error: 0.0412
19/19 [==============================] - 0s 2ms/step - loss: 0.0529 - mean_absolute_error: 0.0529 - val_loss: 0.0542 - val_mean_absolute_error: 0.0542
|
||||
Epoch 12/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0390 - mean_absolute_error: 0.0390
19/19 [==============================] - 0s 2ms/step - loss: 0.0496 - mean_absolute_error: 0.0496 - val_loss: 0.0596 - val_mean_absolute_error: 0.0596
|
||||
Epoch 13/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0625 - mean_absolute_error: 0.0625
19/19 [==============================] - 0s 2ms/step - loss: 0.0545 - mean_absolute_error: 0.0545 - val_loss: 0.0560 - val_mean_absolute_error: 0.0560
|
||||
Epoch 14/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0206 - mean_absolute_error: 0.0206
19/19 [==============================] - 0s 2ms/step - loss: 0.0542 - mean_absolute_error: 0.0542 - val_loss: 0.0542 - val_mean_absolute_error: 0.0542
|
||||
Epoch 15/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0311 - mean_absolute_error: 0.0311
19/19 [==============================] - 0s 3ms/step - loss: 0.0486 - mean_absolute_error: 0.0486 - val_loss: 0.0527 - val_mean_absolute_error: 0.0527
|
||||
Epoch 16/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0270 - mean_absolute_error: 0.0270
19/19 [==============================] - 0s 2ms/step - loss: 0.0477 - mean_absolute_error: 0.0477 - val_loss: 0.0558 - val_mean_absolute_error: 0.0558
|
||||
Epoch 17/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0808 - mean_absolute_error: 0.0808
19/19 [==============================] - 0s 2ms/step - loss: 0.0563 - mean_absolute_error: 0.0563 - val_loss: 0.0546 - val_mean_absolute_error: 0.0546
|
||||
Epoch 18/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0433 - mean_absolute_error: 0.0433
19/19 [==============================] - 0s 2ms/step - loss: 0.0499 - mean_absolute_error: 0.0499 - val_loss: 0.0551 - val_mean_absolute_error: 0.0551
|
||||
Epoch 19/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0431 - mean_absolute_error: 0.0431
19/19 [==============================] - 0s 2ms/step - loss: 0.0524 - mean_absolute_error: 0.0524 - val_loss: 0.0530 - val_mean_absolute_error: 0.0530
|
||||
Epoch 20/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0298 - mean_absolute_error: 0.0298
19/19 [==============================] - 0s 2ms/step - loss: 0.0490 - mean_absolute_error: 0.0490 - val_loss: 0.0517 - val_mean_absolute_error: 0.0517
|
||||
Epoch 21/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0499 - mean_absolute_error: 0.0499
19/19 [==============================] - 0s 2ms/step - loss: 0.0555 - mean_absolute_error: 0.0555 - val_loss: 0.0557 - val_mean_absolute_error: 0.0557
|
||||
Epoch 22/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0401 - mean_absolute_error: 0.0401
19/19 [==============================] - 0s 2ms/step - loss: 0.0524 - mean_absolute_error: 0.0524 - val_loss: 0.0602 - val_mean_absolute_error: 0.0602
|
||||
Epoch 23/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0652 - mean_absolute_error: 0.0652
19/19 [==============================] - 0s 2ms/step - loss: 0.0596 - mean_absolute_error: 0.0596 - val_loss: 0.0567 - val_mean_absolute_error: 0.0567
|
||||
Epoch 24/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0275 - mean_absolute_error: 0.0275
19/19 [==============================] - 0s 2ms/step - loss: 0.0562 - mean_absolute_error: 0.0562 - val_loss: 0.0531 - val_mean_absolute_error: 0.0531
|
||||
Epoch 25/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0602 - mean_absolute_error: 0.0602
19/19 [==============================] - 0s 2ms/step - loss: 0.0576 - mean_absolute_error: 0.0576 - val_loss: 0.0540 - val_mean_absolute_error: 0.0540
|
||||
Epoch 26/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0388 - mean_absolute_error: 0.0388
19/19 [==============================] - 0s 2ms/step - loss: 0.0542 - mean_absolute_error: 0.0542 - val_loss: 0.0555 - val_mean_absolute_error: 0.0555
|
||||
Epoch 27/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0711 - mean_absolute_error: 0.0711
19/19 [==============================] - 0s 2ms/step - loss: 0.0560 - mean_absolute_error: 0.0560 - val_loss: 0.0538 - val_mean_absolute_error: 0.0538
|
||||
Epoch 28/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0875 - mean_absolute_error: 0.0875
19/19 [==============================] - 0s 2ms/step - loss: 0.0614 - mean_absolute_error: 0.0614 - val_loss: 0.0535 - val_mean_absolute_error: 0.0535
|
||||
Epoch 29/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0462 - mean_absolute_error: 0.0462
19/19 [==============================] - 0s 2ms/step - loss: 0.0544 - mean_absolute_error: 0.0544 - val_loss: 0.0562 - val_mean_absolute_error: 0.0562
|
||||
Epoch 30/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0588 - mean_absolute_error: 0.0588
19/19 [==============================] - 0s 2ms/step - loss: 0.0582 - mean_absolute_error: 0.0582 - val_loss: 0.0593 - val_mean_absolute_error: 0.0593
|
||||
views 1
|
||||
dtype: int32
|
||||
views 488
|
||||
dtype: int32
|
||||
likes 1
|
||||
dtype: int32
|
||||
likes 3345
|
||||
dtype: int32
|
||||
129787.96004765884
|
||||
129787.96004765884
|
@ -1,3 +0,0 @@
|
||||
{
|
||||
"prepare_message_ts": "2021-05-20 22:01:49.105722"
|
||||
}
|
@ -1,13 +0,0 @@
|
||||
{
|
||||
"training.metrics": {
|
||||
"steps": [
|
||||
0
|
||||
],
|
||||
"timestamps": [
|
||||
"2021-05-20T20:01:53.071700"
|
||||
],
|
||||
"values": [
|
||||
129787.96004765884
|
||||
]
|
||||
}
|
||||
}
|
@ -1,87 +0,0 @@
|
||||
{
|
||||
"artifacts": [],
|
||||
"command": "my_main",
|
||||
"experiment": {
|
||||
"base_dir": "C:\\Users\\karol\\PycharmProjects\\ium_434765",
|
||||
"dependencies": [
|
||||
"numpy==1.19.5",
|
||||
"pandas==1.2.4",
|
||||
"sacred==0.8.2",
|
||||
"tensorflow==2.5.0rc1"
|
||||
],
|
||||
"mainfile": "neural_network.py",
|
||||
"name": "sacred_scopes",
|
||||
"repositories": [
|
||||
{
|
||||
"commit": "07479089e2d0bd86c8b0dd3bb005f7178078cc34",
|
||||
"dirty": true,
|
||||
"url": "https://git.wmi.amu.edu.pl/s434765/ium_434765.git"
|
||||
},
|
||||
{
|
||||
"commit": "07479089e2d0bd86c8b0dd3bb005f7178078cc34",
|
||||
"dirty": true,
|
||||
"url": "https://git.wmi.amu.edu.pl/s434765/ium_434765.git"
|
||||
}
|
||||
],
|
||||
"sources": [
|
||||
[
|
||||
"evaluate_network.py",
|
||||
"_sources\\evaluate_network_6bc39a6cabbc78720ddbbd5b23f51cc3.py"
|
||||
],
|
||||
[
|
||||
"neural_network.py",
|
||||
"_sources\\neural_network_eca667942d0304c50d970a67f9012302.py"
|
||||
]
|
||||
]
|
||||
},
|
||||
"heartbeat": "2021-05-20T20:01:53.071700",
|
||||
"host": {
|
||||
"ENV": {},
|
||||
"cpu": "Unknown",
|
||||
"gpus": {
|
||||
"driver_version": "452.06",
|
||||
"gpus": [
|
||||
{
|
||||
"model": "GeForce GTX 1650 Ti",
|
||||
"persistence_mode": false,
|
||||
"total_memory": 4096
|
||||
}
|
||||
]
|
||||
},
|
||||
"hostname": "DESKTOP-5PRPHO6",
|
||||
"os": [
|
||||
"Windows",
|
||||
"Windows-10-10.0.19041-SP0"
|
||||
],
|
||||
"python_version": "3.9.2"
|
||||
},
|
||||
"meta": {
|
||||
"command": "my_main",
|
||||
"options": {
|
||||
"--beat-interval": null,
|
||||
"--capture": null,
|
||||
"--comment": null,
|
||||
"--debug": false,
|
||||
"--enforce_clean": false,
|
||||
"--file_storage": null,
|
||||
"--force": false,
|
||||
"--help": false,
|
||||
"--loglevel": null,
|
||||
"--mongo_db": null,
|
||||
"--name": null,
|
||||
"--pdb": false,
|
||||
"--print-config": false,
|
||||
"--priority": null,
|
||||
"--queue": false,
|
||||
"--s3": null,
|
||||
"--sql": null,
|
||||
"--tiny_db": null,
|
||||
"--unobserved": false
|
||||
}
|
||||
},
|
||||
"resources": [],
|
||||
"result": null,
|
||||
"start_time": "2021-05-20T20:01:49.099728",
|
||||
"status": "COMPLETED",
|
||||
"stop_time": "2021-05-20T20:01:53.071700"
|
||||
}
|
@ -1,4 +0,0 @@
|
||||
{
|
||||
"epochs_amount": 30,
|
||||
"seed": 981983024
|
||||
}
|
@ -1,78 +0,0 @@
|
||||
views 0
|
||||
dtype: int32
|
||||
views 488
|
||||
dtype: int32
|
||||
likes 1
|
||||
dtype: int32
|
||||
likes 3345
|
||||
dtype: int32
|
||||
Epoch 1/30
|
||||
1/19 [>.............................] - ETA: 7s - loss: 0.1234 - mean_absolute_error: 0.1234
19/19 [==============================] - 1s 10ms/step - loss: 0.0687 - mean_absolute_error: 0.0687 - val_loss: 0.0587 - val_mean_absolute_error: 0.0587
|
||||
Epoch 2/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0764 - mean_absolute_error: 0.0764
19/19 [==============================] - 0s 2ms/step - loss: 0.0583 - mean_absolute_error: 0.0583 - val_loss: 0.0541 - val_mean_absolute_error: 0.0541
|
||||
Epoch 3/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0781 - mean_absolute_error: 0.0781
19/19 [==============================] - 0s 2ms/step - loss: 0.0595 - mean_absolute_error: 0.0595 - val_loss: 0.0572 - val_mean_absolute_error: 0.0572
|
||||
Epoch 4/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0564 - mean_absolute_error: 0.0564
19/19 [==============================] - 0s 2ms/step - loss: 0.0592 - mean_absolute_error: 0.0592 - val_loss: 0.0541 - val_mean_absolute_error: 0.0541
|
||||
Epoch 5/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0608 - mean_absolute_error: 0.0608
19/19 [==============================] - 0s 2ms/step - loss: 0.0552 - mean_absolute_error: 0.0552 - val_loss: 0.0524 - val_mean_absolute_error: 0.0524
|
||||
Epoch 6/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0346 - mean_absolute_error: 0.0346
19/19 [==============================] - 0s 2ms/step - loss: 0.0510 - mean_absolute_error: 0.0510 - val_loss: 0.0544 - val_mean_absolute_error: 0.0544
|
||||
Epoch 7/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0569 - mean_absolute_error: 0.0569
19/19 [==============================] - 0s 2ms/step - loss: 0.0570 - mean_absolute_error: 0.0570 - val_loss: 0.0521 - val_mean_absolute_error: 0.0521
|
||||
Epoch 8/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0565 - mean_absolute_error: 0.0565
19/19 [==============================] - 0s 2ms/step - loss: 0.0558 - mean_absolute_error: 0.0558 - val_loss: 0.0542 - val_mean_absolute_error: 0.0542
|
||||
Epoch 9/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0829 - mean_absolute_error: 0.0829
19/19 [==============================] - 0s 2ms/step - loss: 0.0563 - mean_absolute_error: 0.0563 - val_loss: 0.0535 - val_mean_absolute_error: 0.0535
|
||||
Epoch 10/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0298 - mean_absolute_error: 0.0298
19/19 [==============================] - 0s 2ms/step - loss: 0.0509 - mean_absolute_error: 0.0509 - val_loss: 0.0520 - val_mean_absolute_error: 0.0520
|
||||
Epoch 11/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0376 - mean_absolute_error: 0.0376
19/19 [==============================] - 0s 2ms/step - loss: 0.0546 - mean_absolute_error: 0.0546 - val_loss: 0.0557 - val_mean_absolute_error: 0.0557
|
||||
Epoch 12/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0577 - mean_absolute_error: 0.0577
19/19 [==============================] - 0s 2ms/step - loss: 0.0567 - mean_absolute_error: 0.0567 - val_loss: 0.0521 - val_mean_absolute_error: 0.0521
|
||||
Epoch 13/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0537 - mean_absolute_error: 0.0537
19/19 [==============================] - 0s 2ms/step - loss: 0.0552 - mean_absolute_error: 0.0552 - val_loss: 0.0556 - val_mean_absolute_error: 0.0556
|
||||
Epoch 14/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0696 - mean_absolute_error: 0.0696
19/19 [==============================] - 0s 2ms/step - loss: 0.0616 - mean_absolute_error: 0.0616 - val_loss: 0.0571 - val_mean_absolute_error: 0.0571
|
||||
Epoch 15/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0726 - mean_absolute_error: 0.0726
19/19 [==============================] - 0s 2ms/step - loss: 0.0556 - mean_absolute_error: 0.0556 - val_loss: 0.0531 - val_mean_absolute_error: 0.0531
|
||||
Epoch 16/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0448 - mean_absolute_error: 0.0448
19/19 [==============================] - 0s 2ms/step - loss: 0.0533 - mean_absolute_error: 0.0533 - val_loss: 0.0562 - val_mean_absolute_error: 0.0562
|
||||
Epoch 17/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0458 - mean_absolute_error: 0.0458
19/19 [==============================] - 0s 2ms/step - loss: 0.0553 - mean_absolute_error: 0.0553 - val_loss: 0.0558 - val_mean_absolute_error: 0.0558
|
||||
Epoch 18/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0547 - mean_absolute_error: 0.0547
19/19 [==============================] - 0s 2ms/step - loss: 0.0590 - mean_absolute_error: 0.0590 - val_loss: 0.0561 - val_mean_absolute_error: 0.0561
|
||||
Epoch 19/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0402 - mean_absolute_error: 0.0402
19/19 [==============================] - 0s 2ms/step - loss: 0.0579 - mean_absolute_error: 0.0579 - val_loss: 0.0554 - val_mean_absolute_error: 0.0554
|
||||
Epoch 20/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0614 - mean_absolute_error: 0.0614
19/19 [==============================] - 0s 2ms/step - loss: 0.0558 - mean_absolute_error: 0.0558 - val_loss: 0.0539 - val_mean_absolute_error: 0.0539
|
||||
Epoch 21/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0492 - mean_absolute_error: 0.0492
19/19 [==============================] - 0s 2ms/step - loss: 0.0525 - mean_absolute_error: 0.0525 - val_loss: 0.0540 - val_mean_absolute_error: 0.0540
|
||||
Epoch 22/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0554 - mean_absolute_error: 0.0554
19/19 [==============================] - 0s 2ms/step - loss: 0.0595 - mean_absolute_error: 0.0595 - val_loss: 0.0533 - val_mean_absolute_error: 0.0533
|
||||
Epoch 23/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0664 - mean_absolute_error: 0.0664
19/19 [==============================] - 0s 2ms/step - loss: 0.0533 - mean_absolute_error: 0.0533 - val_loss: 0.0518 - val_mean_absolute_error: 0.0518
|
||||
Epoch 24/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0282 - mean_absolute_error: 0.0282
19/19 [==============================] - 0s 2ms/step - loss: 0.0471 - mean_absolute_error: 0.0471 - val_loss: 0.0517 - val_mean_absolute_error: 0.0517
|
||||
Epoch 25/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0456 - mean_absolute_error: 0.0456
19/19 [==============================] - 0s 2ms/step - loss: 0.0473 - mean_absolute_error: 0.0473 - val_loss: 0.0536 - val_mean_absolute_error: 0.0536
|
||||
Epoch 26/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0668 - mean_absolute_error: 0.0668
19/19 [==============================] - 0s 2ms/step - loss: 0.0571 - mean_absolute_error: 0.0571 - val_loss: 0.0532 - val_mean_absolute_error: 0.0532
|
||||
Epoch 27/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0602 - mean_absolute_error: 0.0602
19/19 [==============================] - 0s 2ms/step - loss: 0.0558 - mean_absolute_error: 0.0558 - val_loss: 0.0520 - val_mean_absolute_error: 0.0520
|
||||
Epoch 28/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0631 - mean_absolute_error: 0.0631
19/19 [==============================] - 0s 2ms/step - loss: 0.0557 - mean_absolute_error: 0.0557 - val_loss: 0.0528 - val_mean_absolute_error: 0.0528
|
||||
Epoch 29/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0601 - mean_absolute_error: 0.0601
19/19 [==============================] - 0s 2ms/step - loss: 0.0526 - mean_absolute_error: 0.0526 - val_loss: 0.0521 - val_mean_absolute_error: 0.0521
|
||||
Epoch 30/30
|
||||
1/19 [>.............................] - ETA: 0s - loss: 0.0508 - mean_absolute_error: 0.0508
19/19 [==============================] - 0s 2ms/step - loss: 0.0542 - mean_absolute_error: 0.0542 - val_loss: 0.0534 - val_mean_absolute_error: 0.0534
|
||||
views 1
|
||||
dtype: int32
|
||||
views 488
|
||||
dtype: int32
|
||||
likes 1
|
||||
dtype: int32
|
||||
likes 3345
|
||||
dtype: int32
|
||||
114831.63920784603
|
||||
114831.63920784603
|
@ -1,3 +0,0 @@
|
||||
{
|
||||
"prepare_message_ts": "2021-05-20 22:06:00.289863"
|
||||
}
|
@ -1,13 +0,0 @@
|
||||
{
|
||||
"training.metrics": {
|
||||
"steps": [
|
||||
0
|
||||
],
|
||||
"timestamps": [
|
||||
"2021-05-20T20:06:03.338305"
|
||||
],
|
||||
"values": [
|
||||
114831.63920784603
|
||||
]
|
||||
}
|
||||
}
|
@ -1,79 +0,0 @@
|
||||
{
|
||||
"artifacts": [],
|
||||
"command": "my_main",
|
||||
"experiment": {
|
||||
"base_dir": "C:\\Users\\karol\\PycharmProjects\\ium_434765",
|
||||
"dependencies": [
|
||||
"numpy==1.19.5",
|
||||
"pandas==1.2.4",
|
||||
"sacred==0.8.2",
|
||||
"scikit-learn==0.24.1",
|
||||
"tensorflow==2.5.0rc1"
|
||||
],
|
||||
"mainfile": "neural_network.py",
|
||||
"name": "sacred_scopes",
|
||||
"repositories": [
|
||||
{
|
||||
"commit": "b0346d0b62846839e512344b20a566135e07a4b2",
|
||||
"dirty": true,
|
||||
"url": "https://git.wmi.amu.edu.pl/s434765/ium_434765.git"
|
||||
}
|
||||
],
|
||||
"sources": [
|
||||
[
|
||||
"neural_network.py",
|
||||
"_sources\\neural_network_33e5177d0655bf5fef22fcd226db36b1.py"
|
||||
]
|
||||
]
|
||||
},
|
||||
"heartbeat": "2021-05-20T20:06:03.339305",
|
||||
"host": {
|
||||
"ENV": {},
|
||||
"cpu": "Unknown",
|
||||
"gpus": {
|
||||
"driver_version": "452.06",
|
||||
"gpus": [
|
||||
{
|
||||
"model": "GeForce GTX 1650 Ti",
|
||||
"persistence_mode": false,
|
||||
"total_memory": 4096
|
||||
}
|
||||
]
|
||||
},
|
||||
"hostname": "DESKTOP-5PRPHO6",
|
||||
"os": [
|
||||
"Windows",
|
||||
"Windows-10-10.0.19041-SP0"
|
||||
],
|
||||
"python_version": "3.9.2"
|
||||
},
|
||||
"meta": {
|
||||
"command": "my_main",
|
||||
"options": {
|
||||
"--beat-interval": null,
|
||||
"--capture": null,
|
||||
"--comment": null,
|
||||
"--debug": false,
|
||||
"--enforce_clean": false,
|
||||
"--file_storage": null,
|
||||
"--force": false,
|
||||
"--help": false,
|
||||
"--loglevel": null,
|
||||
"--mongo_db": null,
|
||||
"--name": null,
|
||||
"--pdb": false,
|
||||
"--print-config": false,
|
||||
"--priority": null,
|
||||
"--queue": false,
|
||||
"--s3": null,
|
||||
"--sql": null,
|
||||
"--tiny_db": null,
|
||||
"--unobserved": false
|
||||
}
|
||||
},
|
||||
"resources": [],
|
||||
"result": null,
|
||||
"start_time": "2021-05-20T20:06:00.285864",
|
||||
"status": "COMPLETED",
|
||||
"stop_time": "2021-05-20T20:06:03.339305"
|
||||
}
|
@ -1,53 +0,0 @@
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
from sklearn.metrics import mean_squared_error
|
||||
from tensorflow import keras
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
|
||||
def evaluate_model():
|
||||
model = keras.models.load_model('model')
|
||||
data = pd.read_csv("data_dev", sep=',', error_bad_lines=False,
|
||||
skip_blank_lines=True, nrows=527, names=["video_id", "last_trending_date",
|
||||
"publish_date", "publish_hour", "category_id",
|
||||
"channel_title", "views", "likes", "dislikes",
|
||||
"comment_count"]).dropna()
|
||||
X_test = data.loc[:, data.columns == "views"].astype(int)
|
||||
y_test = data.loc[:, data.columns == "likes"].astype(int)
|
||||
|
||||
min_val_sub = np.min(X_test)
|
||||
max_val_sub = np.max(X_test)
|
||||
X_test = (X_test - min_val_sub) / (max_val_sub - min_val_sub)
|
||||
print(min_val_sub)
|
||||
print(max_val_sub)
|
||||
|
||||
min_val_like = np.min(y_test)
|
||||
max_val_like = np.max(y_test)
|
||||
print(min_val_like)
|
||||
print(max_val_like)
|
||||
|
||||
prediction = model.predict(X_test)
|
||||
|
||||
prediction_denormalized = []
|
||||
for pred in prediction:
|
||||
denorm = pred[0] * (max_val_like[0] - min_val_like[0]) + min_val_like[0]
|
||||
prediction_denormalized.append(denorm)
|
||||
|
||||
f = open("predictions.txt", "w")
|
||||
for (pred, test) in zip(prediction_denormalized, y_test.values):
|
||||
f.write("predicted: %s expected: %s\n" % (str(pred), str(test[0])))
|
||||
|
||||
error = mean_squared_error(y_test, prediction_denormalized)
|
||||
print(error)
|
||||
|
||||
with open("rmse.txt", "a") as file:
|
||||
file.write(str(error) + "\n")
|
||||
|
||||
with open("rmse.txt", "r") as file:
|
||||
lines = file.readlines()
|
||||
plt.plot(range(len(lines)), [line[:-2] for line in lines])
|
||||
plt.tight_layout()
|
||||
plt.ylabel('RMSE')
|
||||
plt.xlabel('evaluation no')
|
||||
plt.savefig('evaluation.png')
|
||||
return error
|
@ -1,108 +0,0 @@
|
||||
from datetime import datetime
|
||||
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
from sacred.observers import FileStorageObserver, MongoObserver
|
||||
from sacred import Experiment
|
||||
from sklearn.metrics import mean_squared_error
|
||||
|
||||
from tensorflow import keras
|
||||
|
||||
ex = Experiment("sacred_scopes", interactive=True)
|
||||
# ex.observers.append(MongoObserver(url='mongodb://mongo_user:mongo_password_IUM_2021@172.17.0.1:27017',
|
||||
# db_name='sacred'))
|
||||
ex.observers.append(FileStorageObserver('my_runs'))
|
||||
|
||||
|
||||
@ex.config
|
||||
def my_config():
|
||||
epochs_amount = 30
|
||||
|
||||
|
||||
def normalize_data(data):
|
||||
return (data - np.min(data)) / (np.max(data) - np.min(data))
|
||||
|
||||
|
||||
@ex.capture
|
||||
def prepare_model(epochs_amount, _run):
|
||||
_run.info["prepare_message_ts"] = str(datetime.now())
|
||||
|
||||
data = pd.read_csv("data_train", sep=',', skip_blank_lines=True, nrows=1087, error_bad_lines=False,
|
||||
names=["vipip install sacreddeo_id", "last_trending_date", "publish_date", "publish_hour",
|
||||
"category_id",
|
||||
"channel_title", "views", "likes", "dislikes", "comment_count"]).dropna()
|
||||
|
||||
X = data.loc[:, data.columns == "views"].astype(int)
|
||||
y = data.loc[:, data.columns == "likes"].astype(int)
|
||||
|
||||
min_val_sub = np.min(X)
|
||||
max_val_sub = np.max(X)
|
||||
X = (X - min_val_sub) / (max_val_sub - min_val_sub)
|
||||
print(min_val_sub)
|
||||
print(max_val_sub)
|
||||
|
||||
min_val_like = np.min(y)
|
||||
max_val_like = np.max(y)
|
||||
y = (y - min_val_like) / (max_val_like - min_val_like)
|
||||
|
||||
print(min_val_like)
|
||||
print(max_val_like)
|
||||
|
||||
model = keras.Sequential([
|
||||
keras.layers.Dense(512, input_dim=X.shape[1], activation='relu'),
|
||||
keras.layers.Dense(256, activation='relu'),
|
||||
keras.layers.Dense(256, activation='relu'),
|
||||
keras.layers.Dense(128, activation='relu'),
|
||||
keras.layers.Dense(1, activation='linear'),
|
||||
])
|
||||
|
||||
model.compile(loss='mean_absolute_error', optimizer="Adam", metrics=['mean_absolute_error'])
|
||||
|
||||
model.fit(X, y, epochs=int(epochs_amount), validation_split=0.3)
|
||||
|
||||
data = pd.read_csv("data_dev", sep=',', error_bad_lines=False,
|
||||
skip_blank_lines=True, nrows=527, names=["video_id", "last_trending_date",
|
||||
"publish_date", "publish_hour", "category_id",
|
||||
"channel_title", "views", "likes", "dislikes",
|
||||
"comment_count"]).dropna()
|
||||
X_test = data.loc[:, data.columns == "views"].astype(int)
|
||||
y_test = data.loc[:, data.columns == "likes"].astype(int)
|
||||
|
||||
min_val_sub = np.min(X_test)
|
||||
max_val_sub = np.max(X_test)
|
||||
X_test = (X_test - min_val_sub) / (max_val_sub - min_val_sub)
|
||||
print(min_val_sub)
|
||||
print(max_val_sub)
|
||||
|
||||
min_val_like = np.min(y_test)
|
||||
max_val_like = np.max(y_test)
|
||||
print(min_val_like)
|
||||
print(max_val_like)
|
||||
|
||||
prediction = model.predict(X_test)
|
||||
|
||||
prediction_denormalized = []
|
||||
for pred in prediction:
|
||||
denorm = pred[0] * (max_val_like[0] - min_val_like[0]) + min_val_like[0]
|
||||
prediction_denormalized.append(denorm)
|
||||
|
||||
f = open("predictions.txt", "w")
|
||||
for (pred, test) in zip(prediction_denormalized, y_test.values):
|
||||
f.write("predicted: %s expected: %s\n" % (str(pred), str(test[0])))
|
||||
|
||||
error = mean_squared_error(y_test, prediction_denormalized)
|
||||
print(error)
|
||||
|
||||
model.save('model')
|
||||
|
||||
_run.log_scalar("training.metrics", error)
|
||||
return error
|
||||
|
||||
|
||||
@ex.main
|
||||
def my_main(epochs_amount):
|
||||
print(prepare_model())
|
||||
|
||||
|
||||
ex.run()
|
||||
ex.add_artifact("model.pb")
|
@ -1,79 +0,0 @@
|
||||
from datetime import datetime
|
||||
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
from sacred.observers import FileStorageObserver, MongoObserver
|
||||
from sacred import Experiment
|
||||
|
||||
from tensorflow import keras
|
||||
import sys
|
||||
|
||||
from evaluate_network import evaluate_model
|
||||
|
||||
ex = Experiment("sacred_scopes", interactive=True)
|
||||
# ex.observers.append(MongoObserver(url='mongodb://mongo_user:mongo_password_IUM_2021@172.17.0.1:27017',
|
||||
# db_name='sacred'))
|
||||
ex.observers.append(FileStorageObserver('my_runs'))
|
||||
|
||||
|
||||
@ex.config
|
||||
def my_config():
|
||||
epochs_amount = 30
|
||||
|
||||
|
||||
def normalize_data(data):
|
||||
return (data - np.min(data)) / (np.max(data) - np.min(data))
|
||||
|
||||
|
||||
@ex.capture
|
||||
def prepare_model(epochs_amount, _run):
|
||||
_run.info["prepare_message_ts"] = str(datetime.now())
|
||||
|
||||
data = pd.read_csv("data_train", sep=',', skip_blank_lines=True, nrows=1087, error_bad_lines=False,
|
||||
names=["vipip install sacreddeo_id", "last_trending_date", "publish_date", "publish_hour",
|
||||
"category_id",
|
||||
"channel_title", "views", "likes", "dislikes", "comment_count"]).dropna()
|
||||
|
||||
X = data.loc[:, data.columns == "views"].astype(int)
|
||||
y = data.loc[:, data.columns == "likes"].astype(int)
|
||||
|
||||
min_val_sub = np.min(X)
|
||||
max_val_sub = np.max(X)
|
||||
X = (X - min_val_sub) / (max_val_sub - min_val_sub)
|
||||
print(min_val_sub)
|
||||
print(max_val_sub)
|
||||
|
||||
min_val_like = np.min(y)
|
||||
max_val_like = np.max(y)
|
||||
y = (y - min_val_like) / (max_val_like - min_val_like)
|
||||
|
||||
print(min_val_like)
|
||||
print(max_val_like)
|
||||
|
||||
model = keras.Sequential([
|
||||
keras.layers.Dense(512, input_dim=X.shape[1], activation='relu'),
|
||||
keras.layers.Dense(256, activation='relu'),
|
||||
keras.layers.Dense(256, activation='relu'),
|
||||
keras.layers.Dense(128, activation='relu'),
|
||||
keras.layers.Dense(1, activation='linear'),
|
||||
])
|
||||
|
||||
model.compile(loss='mean_absolute_error', optimizer="Adam", metrics=['mean_absolute_error'])
|
||||
|
||||
model.fit(X, y, epochs=int(epochs_amount), validation_split=0.3)
|
||||
|
||||
model.save('model')
|
||||
|
||||
metrics = evaluate_model()
|
||||
print(metrics)
|
||||
|
||||
return metrics
|
||||
|
||||
|
||||
@ex.main
|
||||
def my_main(epochs_amount):
|
||||
print(prepare_model())
|
||||
|
||||
|
||||
ex.run()
|
||||
ex.add_artifact("model.pb")
|
@ -1,78 +0,0 @@
|
||||
from datetime import datetime
|
||||
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
from sacred.observers import FileStorageObserver, MongoObserver
|
||||
from sacred import Experiment
|
||||
|
||||
from tensorflow import keras
|
||||
import sys
|
||||
|
||||
from evaluate_network import evaluate_model
|
||||
|
||||
ex = Experiment("sacred_scopes", interactive=True)
|
||||
# ex.observers.append(MongoObserver(url='mongodb://mongo_user:mongo_password_IUM_2021@172.17.0.1:27017',
|
||||
# db_name='sacred'))
|
||||
ex.observers.append(FileStorageObserver('my_runs'))
|
||||
|
||||
|
||||
@ex.config
|
||||
def my_config():
|
||||
epochs_amount = 30
|
||||
|
||||
|
||||
def normalize_data(data):
|
||||
return (data - np.min(data)) / (np.max(data) - np.min(data))
|
||||
|
||||
|
||||
@ex.capture
|
||||
def prepare_model(epochs_amount, _run):
|
||||
_run.info["prepare_message_ts"] = str(datetime.now())
|
||||
|
||||
data = pd.read_csv("data_train", sep=',', skip_blank_lines=True, nrows=1087, error_bad_lines=False,
|
||||
names=["vipip install sacreddeo_id", "last_trending_date", "publish_date", "publish_hour",
|
||||
"category_id",
|
||||
"channel_title", "views", "likes", "dislikes", "comment_count"]).dropna()
|
||||
|
||||
X = data.loc[:, data.columns == "views"].astype(int)
|
||||
y = data.loc[:, data.columns == "likes"].astype(int)
|
||||
|
||||
min_val_sub = np.min(X)
|
||||
max_val_sub = np.max(X)
|
||||
X = (X - min_val_sub) / (max_val_sub - min_val_sub)
|
||||
print(min_val_sub)
|
||||
print(max_val_sub)
|
||||
|
||||
min_val_like = np.min(y)
|
||||
max_val_like = np.max(y)
|
||||
y = (y - min_val_like) / (max_val_like - min_val_like)
|
||||
|
||||
print(min_val_like)
|
||||
print(max_val_like)
|
||||
|
||||
model = keras.Sequential([
|
||||
keras.layers.Dense(512, input_dim=X.shape[1], activation='relu'),
|
||||
keras.layers.Dense(256, activation='relu'),
|
||||
keras.layers.Dense(256, activation='relu'),
|
||||
keras.layers.Dense(128, activation='relu'),
|
||||
keras.layers.Dense(1, activation='linear'),
|
||||
])
|
||||
|
||||
model.compile(loss='mean_absolute_error', optimizer="Adam", metrics=['mean_absolute_error'])
|
||||
|
||||
model.fit(X, y, epochs=int(epochs_amount), validation_split=0.3)
|
||||
|
||||
model.save('model')
|
||||
|
||||
metrics = evaluate_model()
|
||||
_run.log_scalar("training.metrics", metrics)
|
||||
return metrics
|
||||
|
||||
|
||||
@ex.main
|
||||
def my_main(epochs_amount):
|
||||
print(prepare_model())
|
||||
|
||||
|
||||
ex.run()
|
||||
ex.add_artifact("model.pb")
|
@ -1,109 +0,0 @@
|
||||
import sys
|
||||
from datetime import datetime
|
||||
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
from sacred.observers import FileStorageObserver, MongoObserver
|
||||
from sacred import Experiment
|
||||
from sklearn.metrics import mean_squared_error
|
||||
|
||||
from tensorflow import keras
|
||||
|
||||
ex = Experiment("s434765", interactive=True, save_git_info=False)
|
||||
ex.observers.append(MongoObserver(url='mongodb://mongo_user:mongo_password_IUM_2021@172.17.0.1:27017',
|
||||
db_name='sacred'))
|
||||
ex.observers.append(FileStorageObserver('my_runs'))
|
||||
|
||||
|
||||
@ex.config
|
||||
def my_config():
|
||||
epochs_amount = int(sys.argv[1])
|
||||
|
||||
|
||||
def normalize_data(data):
|
||||
return (data - np.min(data)) / (np.max(data) - np.min(data))
|
||||
|
||||
|
||||
@ex.capture
|
||||
def prepare_model(epochs_amount, _run):
|
||||
_run.info["prepare_message_ts"] = str(datetime.now())
|
||||
|
||||
data = pd.read_csv("data_train", sep=',', skip_blank_lines=True, nrows=1087, error_bad_lines=False,
|
||||
names=["vipip install sacreddeo_id", "last_trending_date", "publish_date", "publish_hour",
|
||||
"category_id",
|
||||
"channel_title", "views", "likes", "dislikes", "comment_count"]).dropna()
|
||||
|
||||
X = data.loc[:, data.columns == "views"].astype(int)
|
||||
y = data.loc[:, data.columns == "likes"].astype(int)
|
||||
|
||||
min_val_sub = np.min(X)
|
||||
max_val_sub = np.max(X)
|
||||
X = (X - min_val_sub) / (max_val_sub - min_val_sub)
|
||||
print(min_val_sub)
|
||||
print(max_val_sub)
|
||||
|
||||
min_val_like = np.min(y)
|
||||
max_val_like = np.max(y)
|
||||
y = (y - min_val_like) / (max_val_like - min_val_like)
|
||||
|
||||
print(min_val_like)
|
||||
print(max_val_like)
|
||||
|
||||
model = keras.Sequential([
|
||||
keras.layers.Dense(512, input_dim=X.shape[1], activation='relu'),
|
||||
keras.layers.Dense(256, activation='relu'),
|
||||
keras.layers.Dense(256, activation='relu'),
|
||||
keras.layers.Dense(128, activation='relu'),
|
||||
keras.layers.Dense(1, activation='linear'),
|
||||
])
|
||||
|
||||
model.compile(loss='mean_absolute_error', optimizer="Adam", metrics=['mean_absolute_error'])
|
||||
|
||||
model.fit(X, y, epochs=int(epochs_amount), validation_split=0.3)
|
||||
|
||||
data = pd.read_csv("data_dev", sep=',', error_bad_lines=False,
|
||||
skip_blank_lines=True, nrows=527, names=["video_id", "last_trending_date",
|
||||
"publish_date", "publish_hour", "category_id",
|
||||
"channel_title", "views", "likes", "dislikes",
|
||||
"comment_count"]).dropna()
|
||||
X_test = data.loc[:, data.columns == "views"].astype(int)
|
||||
y_test = data.loc[:, data.columns == "likes"].astype(int)
|
||||
|
||||
min_val_sub = np.min(X_test)
|
||||
max_val_sub = np.max(X_test)
|
||||
X_test = (X_test - min_val_sub) / (max_val_sub - min_val_sub)
|
||||
print(min_val_sub)
|
||||
print(max_val_sub)
|
||||
|
||||
min_val_like = np.min(y_test)
|
||||
max_val_like = np.max(y_test)
|
||||
print(min_val_like)
|
||||
print(max_val_like)
|
||||
|
||||
prediction = model.predict(X_test)
|
||||
|
||||
prediction_denormalized = []
|
||||
for pred in prediction:
|
||||
denorm = pred[0] * (max_val_like[0] - min_val_like[0]) + min_val_like[0]
|
||||
prediction_denormalized.append(denorm)
|
||||
|
||||
f = open("predictions.txt", "w")
|
||||
for (pred, test) in zip(prediction_denormalized, y_test.values):
|
||||
f.write("predicted: %s expected: %s\n" % (str(pred), str(test[0])))
|
||||
|
||||
error = mean_squared_error(y_test, prediction_denormalized)
|
||||
print(error)
|
||||
|
||||
model.save('model')
|
||||
|
||||
_run.log_scalar("training.metrics", error)
|
||||
return error
|
||||
|
||||
|
||||
@ex.main
|
||||
def my_main(epochs_amount):
|
||||
print(prepare_model())
|
||||
|
||||
|
||||
ex.run()
|
||||
ex.add_artifact("model/saved_model.pb")
|
@ -1,2 +0,0 @@
|
||||
#!/bin/bash
|
||||
python3 neural_network.py $1
|
422
predictions.txt
422
predictions.txt
@ -1,422 +0,0 @@
|
||||
predicted: 400.330885887146 expected: 617
|
||||
predicted: 27.162359654903412 expected: 172
|
||||
predicted: 1451.7506175041199 expected: 611
|
||||
predicted: 89.5334190428257 expected: 269
|
||||
predicted: 1451.7506175041199 expected: 1095
|
||||
predicted: 89.5334190428257 expected: 68
|
||||
predicted: 26.76018589735031 expected: 5
|
||||
predicted: 400.330885887146 expected: 986
|
||||
predicted: 179.86350238323212 expected: 262
|
||||
predicted: 357.96860003471375 expected: 817
|
||||
predicted: 208.96947646141052 expected: 197
|
||||
predicted: 151.92037403583527 expected: 264
|
||||
predicted: 311.94646322727203 expected: 830
|
||||
predicted: 1451.7506175041199 expected: 1415
|
||||
predicted: 308.85175335407257 expected: 134
|
||||
predicted: 26.881321370601654 expected: 58
|
||||
predicted: 29.60762630403042 expected: 93
|
||||
predicted: 473.10275983810425 expected: 830
|
||||
predicted: 1451.7506175041199 expected: 1207
|
||||
predicted: 318.1358331441879 expected: 269
|
||||
predicted: 454.97389698028564 expected: 558
|
||||
predicted: 1308.27658700943 expected: 1558
|
||||
predicted: 27.31346444785595 expected: 37
|
||||
predicted: 476.11863946914673 expected: 364
|
||||
predicted: 494.2209930419922 expected: 1020
|
||||
predicted: 26.76018589735031 expected: 11
|
||||
predicted: 351.91593730449677 expected: 225
|
||||
predicted: 476.11863946914673 expected: 228
|
||||
predicted: 1308.27658700943 expected: 1184
|
||||
predicted: 336.6213505268097 expected: 370
|
||||
predicted: 27.781967476010323 expected: 68
|
||||
predicted: 144.74467933177948 expected: 201
|
||||
predicted: 1451.7506175041199 expected: 1113
|
||||
predicted: 336.6213505268097 expected: 496
|
||||
predicted: 27.781964361667633 expected: 43
|
||||
predicted: 30.40837675333023 expected: 59
|
||||
predicted: 27.781964361667633 expected: 60
|
||||
predicted: 31.24549649655819 expected: 78
|
||||
predicted: 231.2072286605835 expected: 263
|
||||
predicted: 318.1358331441879 expected: 400
|
||||
predicted: 1451.7506175041199 expected: 1256
|
||||
predicted: 27.781964361667633 expected: 23
|
||||
predicted: 1451.7506175041199 expected: 3345
|
||||
predicted: 35.02500361204147 expected: 98
|
||||
predicted: 530.2856295108795 expected: 238
|
||||
predicted: 39.78039000928402 expected: 69
|
||||
predicted: 351.91593730449677 expected: 170
|
||||
predicted: 26.79070645570755 expected: 31
|
||||
predicted: 43.6776317358017 expected: 102
|
||||
predicted: 1451.7506175041199 expected: 1070
|
||||
predicted: 115.7426495552063 expected: 96
|
||||
predicted: 433.7032353878021 expected: 387
|
||||
predicted: 27.035397246479988 expected: 25
|
||||
predicted: 418.5240786075592 expected: 574
|
||||
predicted: 357.96860003471375 expected: 165
|
||||
predicted: 397.3030471801758 expected: 765
|
||||
predicted: 473.10275983810425 expected: 599
|
||||
predicted: 454.97389698028564 expected: 906
|
||||
predicted: 33.45454025268555 expected: 71
|
||||
predicted: 409.42135322093964 expected: 433
|
||||
predicted: 409.42135322093964 expected: 152
|
||||
predicted: 60.30296468734741 expected: 116
|
||||
predicted: 26.76018589735031 expected: 19
|
||||
predicted: 26.76018589735031 expected: 24
|
||||
predicted: 43.6776317358017 expected: 97
|
||||
predicted: 60.30296468734741 expected: 49
|
||||
predicted: 530.2856295108795 expected: 291
|
||||
predicted: 1451.7506175041199 expected: 2816
|
||||
predicted: 351.91593730449677 expected: 152
|
||||
predicted: 473.10275983810425 expected: 1033
|
||||
predicted: 454.97389698028564 expected: 740
|
||||
predicted: 29.60762630403042 expected: 32
|
||||
predicted: 46.188458412885666 expected: 74
|
||||
predicted: 530.2856295108795 expected: 453
|
||||
predicted: 351.91593730449677 expected: 219
|
||||
predicted: 100.77534905076027 expected: 82
|
||||
predicted: 123.19417536258698 expected: 72
|
||||
predicted: 27.514323979616165 expected: 109
|
||||
predicted: 400.330885887146 expected: 567
|
||||
predicted: 271.7156335115433 expected: 389
|
||||
predicted: 29.60762630403042 expected: 70
|
||||
predicted: 1451.7506175041199 expected: 987
|
||||
predicted: 1451.7506175041199 expected: 1812
|
||||
predicted: 476.11863946914673 expected: 169
|
||||
predicted: 234.37723088264465 expected: 270
|
||||
predicted: 26.770161136984825 expected: 33
|
||||
predicted: 81.62594100832939 expected: 75
|
||||
predicted: 1451.7506175041199 expected: 1424
|
||||
predicted: 26.76018589735031 expected: 39
|
||||
predicted: 26.770161136984825 expected: 49
|
||||
predicted: 26.79070645570755 expected: 141
|
||||
predicted: 26.76018589735031 expected: 24
|
||||
predicted: 100.77534905076027 expected: 91
|
||||
predicted: 189.9326456785202 expected: 101
|
||||
predicted: 494.2209930419922 expected: 401
|
||||
predicted: 494.2209930419922 expected: 570
|
||||
predicted: 104.52815690636635 expected: 106
|
||||
predicted: 26.76077450811863 expected: 43
|
||||
predicted: 530.2856295108795 expected: 439
|
||||
predicted: 1308.27658700943 expected: 1220
|
||||
predicted: 27.781964361667633 expected: 82
|
||||
predicted: 26.76018589735031 expected: 5
|
||||
predicted: 476.11863946914673 expected: 314
|
||||
predicted: 336.6213505268097 expected: 180
|
||||
predicted: 28.17588511109352 expected: 88
|
||||
predicted: 1451.7506175041199 expected: 1642
|
||||
predicted: 400.330885887146 expected: 417
|
||||
predicted: 256.2422585487366 expected: 346
|
||||
predicted: 26.76018589735031 expected: 10
|
||||
predicted: 115.7426495552063 expected: 93
|
||||
predicted: 26.79070645570755 expected: 26
|
||||
predicted: 52.00283966958523 expected: 41
|
||||
predicted: 1451.7506175041199 expected: 505
|
||||
predicted: 26.76018589735031 expected: 11
|
||||
predicted: 1451.7506175041199 expected: 929
|
||||
predicted: 357.96860003471375 expected: 877
|
||||
predicted: 39.78039000928402 expected: 370
|
||||
predicted: 26.76018589735031 expected: 28
|
||||
predicted: 1451.7506175041199 expected: 1085
|
||||
predicted: 1308.27658700943 expected: 654
|
||||
predicted: 28.17588511109352 expected: 59
|
||||
predicted: 144.74467933177948 expected: 259
|
||||
predicted: 321.2292972803116 expected: 165
|
||||
predicted: 26.76018589735031 expected: 1
|
||||
predicted: 26.76018589735031 expected: 26
|
||||
predicted: 100.77534905076027 expected: 399
|
||||
predicted: 397.3030720949173 expected: 155
|
||||
predicted: 137.58719730377197 expected: 158
|
||||
predicted: 433.7032353878021 expected: 782
|
||||
predicted: 141.16236305236816 expected: 376
|
||||
predicted: 26.76018589735031 expected: 1
|
||||
predicted: 193.0980635881424 expected: 116
|
||||
predicted: 256.2422585487366 expected: 628
|
||||
predicted: 1451.7506175041199 expected: 1897
|
||||
predicted: 73.2502589225769 expected: 76
|
||||
predicted: 569.2618026733398 expected: 450
|
||||
predicted: 234.37723088264465 expected: 272
|
||||
predicted: 351.91593730449677 expected: 149
|
||||
predicted: 1308.27658700943 expected: 1069
|
||||
predicted: 176.44806504249573 expected: 286
|
||||
predicted: 137.58719730377197 expected: 526
|
||||
predicted: 27.31346444785595 expected: 29
|
||||
predicted: 256.2422585487366 expected: 373
|
||||
predicted: 100.77534905076027 expected: 481
|
||||
predicted: 89.5334190428257 expected: 74
|
||||
predicted: 27.035397246479988 expected: 54
|
||||
predicted: 108.27169024944305 expected: 102
|
||||
predicted: 26.76018589735031 expected: 22
|
||||
predicted: 1451.7506175041199 expected: 1360
|
||||
predicted: 433.7032353878021 expected: 324
|
||||
predicted: 397.3030471801758 expected: 973
|
||||
predicted: 400.330885887146 expected: 407
|
||||
predicted: 186.616468667984 expected: 317
|
||||
predicted: 26.76018589735031 expected: 76
|
||||
predicted: 418.5240786075592 expected: 688
|
||||
predicted: 26.944442868232727 expected: 44
|
||||
predicted: 318.1358331441879 expected: 239
|
||||
predicted: 433.7032353878021 expected: 344
|
||||
predicted: 418.5240786075592 expected: 688
|
||||
predicted: 351.91593730449677 expected: 442
|
||||
predicted: 68.93387961387634 expected: 157
|
||||
predicted: 1451.7506175041199 expected: 1193
|
||||
predicted: 32.178858771920204 expected: 102
|
||||
predicted: 397.3030471801758 expected: 768
|
||||
predicted: 28.805081993341446 expected: 42
|
||||
predicted: 271.7156335115433 expected: 265
|
||||
predicted: 27.31346444785595 expected: 15
|
||||
predicted: 27.781964361667633 expected: 44
|
||||
predicted: 26.76018589735031 expected: 1
|
||||
predicted: 351.91593730449677 expected: 216
|
||||
predicted: 26.79070645570755 expected: 20
|
||||
predicted: 530.2856295108795 expected: 308
|
||||
predicted: 26.881321370601654 expected: 29
|
||||
predicted: 35.02500361204147 expected: 208
|
||||
predicted: 126.88576769828796 expected: 99
|
||||
predicted: 32.178858771920204 expected: 48
|
||||
predicted: 26.76018589735031 expected: 15
|
||||
predicted: 400.330885887146 expected: 630
|
||||
predicted: 271.7156335115433 expected: 333
|
||||
predicted: 26.826289378106594 expected: 55
|
||||
predicted: 28.17588511109352 expected: 52
|
||||
predicted: 30.40837675333023 expected: 27
|
||||
predicted: 26.944442868232727 expected: 16
|
||||
predicted: 530.2856295108795 expected: 472
|
||||
predicted: 351.91593730449677 expected: 162
|
||||
predicted: 1451.7506175041199 expected: 1054
|
||||
predicted: 108.27169024944305 expected: 223
|
||||
predicted: 26.76018589735031 expected: 22
|
||||
predicted: 1451.7506175041199 expected: 3345
|
||||
predicted: 73.2502589225769 expected: 71
|
||||
predicted: 476.11863946914673 expected: 862
|
||||
predicted: 27.514320865273476 expected: 26
|
||||
predicted: 1308.27658700943 expected: 624
|
||||
predicted: 28.805081993341446 expected: 24
|
||||
predicted: 26.79070645570755 expected: 115
|
||||
predicted: 1451.7506175041199 expected: 3131
|
||||
predicted: 30.40837675333023 expected: 27
|
||||
predicted: 1451.7506175041199 expected: 1116
|
||||
predicted: 234.37723088264465 expected: 501
|
||||
predicted: 1308.27658700943 expected: 1380
|
||||
predicted: 433.7032353878021 expected: 538
|
||||
predicted: 26.944442868232727 expected: 77
|
||||
predicted: 253.14989066123962 expected: 270
|
||||
predicted: 1308.27658700943 expected: 618
|
||||
predicted: 530.2856295108795 expected: 335
|
||||
predicted: 400.330885887146 expected: 550
|
||||
predicted: 89.5334190428257 expected: 169
|
||||
predicted: 400.330885887146 expected: 653
|
||||
predicted: 27.035397246479988 expected: 21
|
||||
predicted: 189.9326456785202 expected: 225
|
||||
predicted: 1451.7506175041199 expected: 2192
|
||||
predicted: 357.96860003471375 expected: 213
|
||||
predicted: 409.42135322093964 expected: 695
|
||||
predicted: 26.761529736220837 expected: 23
|
||||
predicted: 68.93387961387634 expected: 148
|
||||
predicted: 123.19417536258698 expected: 57
|
||||
predicted: 27.514323979616165 expected: 42
|
||||
predicted: 123.19417536258698 expected: 195
|
||||
predicted: 141.16236305236816 expected: 172
|
||||
predicted: 494.2209930419922 expected: 220
|
||||
predicted: 166.22088754177094 expected: 112
|
||||
predicted: 26.826289378106594 expected: 14
|
||||
predicted: 351.91593730449677 expected: 314
|
||||
predicted: 30.40837363898754 expected: 47
|
||||
predicted: 454.97389698028564 expected: 836
|
||||
predicted: 409.42135322093964 expected: 375
|
||||
predicted: 400.330885887146 expected: 501
|
||||
predicted: 360.99444556236267 expected: 392
|
||||
predicted: 409.42135322093964 expected: 824
|
||||
predicted: 56.03865718841553 expected: 220
|
||||
predicted: 26.76018589735031 expected: 3
|
||||
predicted: 224.82746028900146 expected: 307
|
||||
predicted: 26.76018589735031 expected: 18
|
||||
predicted: 29.60762630403042 expected: 93
|
||||
predicted: 318.1358331441879 expected: 180
|
||||
predicted: 26.76018589735031 expected: 3
|
||||
predicted: 530.2856295108795 expected: 297
|
||||
predicted: 494.2209930419922 expected: 576
|
||||
predicted: 530.2856295108795 expected: 314
|
||||
predicted: 193.0980635881424 expected: 139
|
||||
predicted: 29.60762630403042 expected: 105
|
||||
predicted: 318.1358331441879 expected: 231
|
||||
predicted: 26.826289378106594 expected: 12
|
||||
predicted: 1308.27658700943 expected: 1026
|
||||
predicted: 318.1358331441879 expected: 304
|
||||
predicted: 26.76018589735031 expected: 3
|
||||
predicted: 357.96860003471375 expected: 335
|
||||
predicted: 56.03865718841553 expected: 110
|
||||
predicted: 26.79070645570755 expected: 43
|
||||
predicted: 43.6776317358017 expected: 113
|
||||
predicted: 400.330885887146 expected: 487
|
||||
predicted: 357.96860003471375 expected: 541
|
||||
predicted: 212.1372114419937 expected: 114
|
||||
predicted: 26.826289378106594 expected: 101
|
||||
predicted: 179.86350238323212 expected: 251
|
||||
predicted: 1451.7506175041199 expected: 1358
|
||||
predicted: 360.99444556236267 expected: 1031
|
||||
predicted: 1451.7506175041199 expected: 1788
|
||||
predicted: 186.616468667984 expected: 137
|
||||
predicted: 26.76018589735031 expected: 29
|
||||
predicted: 30.40837675333023 expected: 68
|
||||
predicted: 476.11863946914673 expected: 442
|
||||
predicted: 26.944442868232727 expected: 24
|
||||
predicted: 454.97389698028564 expected: 1129
|
||||
predicted: 26.76018589735031 expected: 35
|
||||
predicted: 33.45454025268555 expected: 181
|
||||
predicted: 530.2856295108795 expected: 894
|
||||
predicted: 26.76018589735031 expected: 49
|
||||
predicted: 68.93387961387634 expected: 170
|
||||
predicted: 123.19417536258698 expected: 196
|
||||
predicted: 1451.7506175041199 expected: 3345
|
||||
predicted: 30.40837675333023 expected: 24
|
||||
predicted: 433.7032353878021 expected: 629
|
||||
predicted: 530.2856295108795 expected: 290
|
||||
predicted: 433.7032353878021 expected: 342
|
||||
predicted: 108.27169024944305 expected: 177
|
||||
predicted: 26.944442868232727 expected: 57
|
||||
predicted: 1308.27658700943 expected: 707
|
||||
predicted: 228.01589941978455 expected: 289
|
||||
predicted: 27.514323979616165 expected: 78
|
||||
predicted: 357.96860003471375 expected: 530
|
||||
predicted: 179.86350238323212 expected: 276
|
||||
predicted: 400.330885887146 expected: 389
|
||||
predicted: 27.781964361667633 expected: 173
|
||||
predicted: 530.2856295108795 expected: 717
|
||||
predicted: 476.11863946914673 expected: 707
|
||||
predicted: 530.2856295108795 expected: 440
|
||||
predicted: 26.761529736220837 expected: 36
|
||||
predicted: 35.02500361204147 expected: 115
|
||||
predicted: 100.77534905076027 expected: 437
|
||||
predicted: 30.40837675333023 expected: 75
|
||||
predicted: 1451.7506175041199 expected: 611
|
||||
predicted: 27.035397246479988 expected: 17
|
||||
predicted: 26.76018589735031 expected: 52
|
||||
predicted: 476.11863946914673 expected: 849
|
||||
predicted: 397.3030471801758 expected: 230
|
||||
predicted: 357.96860003471375 expected: 537
|
||||
predicted: 1451.7506175041199 expected: 1645
|
||||
predicted: 357.96860003471375 expected: 221
|
||||
predicted: 104.52815690636635 expected: 167
|
||||
predicted: 397.3030471801758 expected: 274
|
||||
predicted: 137.58719730377197 expected: 141
|
||||
predicted: 530.2856295108795 expected: 414
|
||||
predicted: 26.76018589735031 expected: 32
|
||||
predicted: 357.96860003471375 expected: 203
|
||||
predicted: 26.76018589735031 expected: 18
|
||||
predicted: 179.86350238323212 expected: 212
|
||||
predicted: 27.514323979616165 expected: 29
|
||||
predicted: 1451.7506175041199 expected: 1665
|
||||
predicted: 351.91593730449677 expected: 192
|
||||
predicted: 26.944442868232727 expected: 24
|
||||
predicted: 186.616468667984 expected: 175
|
||||
predicted: 1451.7506175041199 expected: 1329
|
||||
predicted: 494.2209930419922 expected: 261
|
||||
predicted: 357.96860003471375 expected: 712
|
||||
predicted: 60.30296468734741 expected: 52
|
||||
predicted: 351.91593730449677 expected: 157
|
||||
predicted: 218.47828722000122 expected: 285
|
||||
predicted: 311.94648814201355 expected: 405
|
||||
predicted: 318.1358082294464 expected: 452
|
||||
predicted: 1451.7506175041199 expected: 1267
|
||||
predicted: 26.76018589735031 expected: 50
|
||||
predicted: 81.62594100832939 expected: 150
|
||||
predicted: 176.44806504249573 expected: 255
|
||||
predicted: 26.770161136984825 expected: 18
|
||||
predicted: 26.76018589735031 expected: 4
|
||||
predicted: 430.66587924957275 expected: 437
|
||||
predicted: 26.76018589735031 expected: 24
|
||||
predicted: 26.944442868232727 expected: 71
|
||||
predicted: 530.2856295108795 expected: 532
|
||||
predicted: 476.11863946914673 expected: 729
|
||||
predicted: 26.826289378106594 expected: 35
|
||||
predicted: 454.97389698028564 expected: 368
|
||||
predicted: 26.76018589735031 expected: 12
|
||||
predicted: 1451.7506175041199 expected: 2034
|
||||
predicted: 433.7032353878021 expected: 391
|
||||
predicted: 357.96860003471375 expected: 560
|
||||
predicted: 530.2856295108795 expected: 1011
|
||||
predicted: 454.97389698028564 expected: 600
|
||||
predicted: 186.616468667984 expected: 167
|
||||
predicted: 26.76018589735031 expected: 34
|
||||
predicted: 27.035397246479988 expected: 47
|
||||
predicted: 1451.7506175041199 expected: 1148
|
||||
predicted: 271.7156335115433 expected: 326
|
||||
predicted: 1451.7506175041199 expected: 876
|
||||
predicted: 26.76018589735031 expected: 10
|
||||
predicted: 1451.7506175041199 expected: 3345
|
||||
predicted: 409.42135322093964 expected: 993
|
||||
predicted: 39.78039000928402 expected: 49
|
||||
predicted: 112.0236759185791 expected: 230
|
||||
predicted: 433.7032353878021 expected: 679
|
||||
predicted: 1451.7506175041199 expected: 2201
|
||||
predicted: 141.16236305236816 expected: 202
|
||||
predicted: 569.2618026733398 expected: 663
|
||||
predicted: 56.03865718841553 expected: 79
|
||||
predicted: 308.85175335407257 expected: 214
|
||||
predicted: 409.42135322093964 expected: 829
|
||||
predicted: 30.40837675333023 expected: 149
|
||||
predicted: 357.96860003471375 expected: 729
|
||||
predicted: 27.781964361667633 expected: 19
|
||||
predicted: 231.2072286605835 expected: 173
|
||||
predicted: 397.3030471801758 expected: 240
|
||||
predicted: 81.62594100832939 expected: 89
|
||||
predicted: 26.826289378106594 expected: 49
|
||||
predicted: 400.330885887146 expected: 228
|
||||
predicted: 1451.7506175041199 expected: 651
|
||||
predicted: 26.76077450811863 expected: 15
|
||||
predicted: 43.6776317358017 expected: 61
|
||||
predicted: 27.31346444785595 expected: 84
|
||||
predicted: 26.826289378106594 expected: 36
|
||||
predicted: 68.93387961387634 expected: 101
|
||||
predicted: 293.37837839126587 expected: 184
|
||||
predicted: 311.94646322727203 expected: 268
|
||||
predicted: 1451.7506175041199 expected: 2910
|
||||
predicted: 27.31346444785595 expected: 106
|
||||
predicted: 271.7156335115433 expected: 433
|
||||
predicted: 1451.7506175041199 expected: 1700
|
||||
predicted: 27.162359654903412 expected: 41
|
||||
predicted: 26.76018589735031 expected: 1
|
||||
predicted: 400.330885887146 expected: 520
|
||||
predicted: 26.76018589735031 expected: 50
|
||||
predicted: 433.7032353878021 expected: 734
|
||||
predicted: 26.761529736220837 expected: 45
|
||||
predicted: 1451.7506175041199 expected: 2837
|
||||
predicted: 27.31346444785595 expected: 23
|
||||
predicted: 89.5334190428257 expected: 145
|
||||
predicted: 530.2856295108795 expected: 185
|
||||
predicted: 26.76018589735031 expected: 42
|
||||
predicted: 208.96947646141052 expected: 410
|
||||
predicted: 1451.7506175041199 expected: 1622
|
||||
predicted: 409.42135322093964 expected: 661
|
||||
predicted: 26.76018589735031 expected: 4
|
||||
predicted: 293.37837839126587 expected: 369
|
||||
predicted: 253.14989066123962 expected: 221
|
||||
predicted: 293.37837839126587 expected: 234
|
||||
predicted: 104.52815690636635 expected: 380
|
||||
predicted: 357.96860003471375 expected: 249
|
||||
predicted: 26.76018589735031 expected: 25
|
||||
predicted: 1451.7506175041199 expected: 1876
|
||||
predicted: 253.14989066123962 expected: 241
|
||||
predicted: 199.41325294971466 expected: 334
|
||||
predicted: 250.05866885185242 expected: 303
|
||||
predicted: 26.76018589735031 expected: 19
|
||||
predicted: 1451.7506175041199 expected: 1248
|
||||
predicted: 100.77534905076027 expected: 501
|
||||
predicted: 433.7032353878021 expected: 328
|
||||
predicted: 256.2422585487366 expected: 406
|
||||
predicted: 137.58719730377197 expected: 141
|
||||
predicted: 100.77534905076027 expected: 408
|
||||
predicted: 26.76018589735031 expected: 4
|
||||
predicted: 1451.7506175041199 expected: 3147
|
||||
predicted: 29.60762630403042 expected: 99
|
||||
predicted: 179.86350238323212 expected: 89
|
||||
predicted: 28.805081993341446 expected: 61
|
||||
predicted: 26.944442868232727 expected: 27
|
||||
predicted: 1451.7506175041199 expected: 1088
|
||||
predicted: 29.60762318968773 expected: 105
|
||||
predicted: 85.75156059861183 expected: 173
|
||||
predicted: 1308.27658700943 expected: 1496
|
||||
predicted: 530.2856295108795 expected: 866
|
||||
predicted: 494.2210428714752 expected: 399
|
||||
predicted: 250.05866885185242 expected: 317
|
25
rmse.txt
25
rmse.txt
@ -1,25 +0,0 @@
|
||||
109845.55756236914
|
||||
104845.55756236914
|
||||
109845.55756236914
|
||||
109845.55756236914
|
||||
104845.55756236914
|
||||
19845.55756236914
|
||||
109845.55756236914
|
||||
109845.55756236914
|
||||
109845.55756236914
|
||||
109845.55756236914
|
||||
109845.55756236914
|
||||
109845.55756236914
|
||||
109845.55756236914
|
||||
109845.55756236914
|
||||
109845.55756236914
|
||||
109845.55756236914
|
||||
109845.55756236914
|
||||
109845.55756236914
|
||||
109845.55756236914
|
||||
109845.55756236914
|
||||
109845.55756236914
|
||||
109845.55756236914
|
||||
109845.55756236914
|
||||
114882.99377127373
|
||||
129787.96004765884
|
Loading…
Reference in New Issue
Block a user