import pandas as pd import numpy as np from sklearn.metrics import mean_squared_error from tensorflow import keras model = keras.models.load_model('model') data = pd.read_csv("data_dev", sep=',', error_bad_lines=False, skip_blank_lines=True, nrows=527, names=["video_id", "last_trending_date", "publish_date", "publish_hour", "category_id", "channel_title", "views", "likes", "dislikes", "comment_count"]).dropna() X_test = data.loc[:,data.columns == "views"].astype(int) y_test = data.loc[:,data.columns == "likes"].astype(int) min_val_sub = np.min(X_test) max_val_sub = np.max(X_test) X_test = (X_test - min_val_sub) / (max_val_sub - min_val_sub) print(min_val_sub) print(max_val_sub) min_val_like = np.min(y_test) max_val_like = np.max(y_test) print(min_val_like) print(max_val_like) prediction = model.predict(X_test) prediction_denormalized = [] for pred in prediction: denorm = pred[0] * (max_val_like[0] - min_val_like[0]) + min_val_like[0] prediction_denormalized.append(denorm) f = open("predictions.txt", "w") for (pred, test) in zip(prediction_denormalized, y_test.values): f.write("predicted: %s expected: %s\n" % (str(pred), str(test[0]))) error = mean_squared_error(y_test, prediction_denormalized) print(error)