import pandas as pd import numpy as np from sklearn.metrics import mean_squared_error from tensorflow import keras def normalize_data(data): return (data - np.min(data)) / (np.max(data) - np.min(data)) data = pd.read_csv("data_train", sep=',', error_bad_lines=False).dropna() X = data.loc[:,data.columns == "2805317"].astype(int) y = data.loc[:,data.columns == "198909"].astype(int) min_val_sub = np.min(X) max_val_sub = np.max(X) X = (X - min_val_sub) / (max_val_sub - min_val_sub) print(min_val_sub) print(max_val_sub) min_val_like = np.min(y) max_val_like = np.max(y) y = (y - min_val_like) / (max_val_like - min_val_like) print(min_val_like) print(max_val_like) model = keras.Sequential([ keras.layers.Dense(512,input_dim = X.shape[1], activation='relu'), keras.layers.Dense(256, activation='relu'), keras.layers.Dense(256, activation='relu'), keras.layers.Dense(128, activation='relu'), keras.layers.Dense(1,activation='linear'), ]) model.compile(loss='mean_absolute_error', optimizer="Adam", metrics=['mean_absolute_error']) model.fit(X, y, epochs=30, validation_split = 0.3) data = pd.read_csv("data_dev", sep=',', error_bad_lines=False).dropna() X_test = data.loc[:,data.columns == "440265"].astype(int) y_test = data.loc[:,data.columns == "21629"].astype(int) min_val_sub = np.min(X_test) max_val_sub = np.max(X_test) X_test = (X_test - min_val_sub) / (max_val_sub - min_val_sub) print(min_val_sub) print(max_val_sub) min_val_like = np.min(y_test) max_val_like = np.max(y_test) print(min_val_like) print(max_val_like) prediction = model.predict(X_test) prediction_denormalized = [] for pred in prediction: denorm = pred[0] * (max_val_like[0] - min_val_like[0]) + min_val_like[0] prediction_denormalized.append(denorm) f = open("predictions.txt", "w") for (pred, test) in zip(prediction_denormalized, y_test.values): f.write("predicted: %s expected: %s\n" % (str(pred), str(test[0]))) error = mean_squared_error(y_test, prediction_denormalized) print(error)