434766
This commit is contained in:
parent
61e88a9c8c
commit
dc5a5cfe83
10519
dev-0/out.tsv
Normal file
10519
dev-0/out.tsv
Normal file
File diff suppressed because it is too large
Load Diff
64
run.py
Normal file
64
run.py
Normal file
@ -0,0 +1,64 @@
|
||||
from collections import defaultdict, Counter
|
||||
from nltk import trigrams, word_tokenize
|
||||
import csv
|
||||
import regex as re
|
||||
import pandas as pd
|
||||
|
||||
in_file = 'train/in.tsv.xz'
|
||||
out_file = 'train/expected.tsv'
|
||||
|
||||
X_train = pd.read_csv(in_file, sep='\t', header=None, quoting=csv.QUOTE_NONE, nrows=10000, error_bad_lines=False)
|
||||
Y_train = pd.read_csv(out_file, sep='\t', header=None, quoting=csv.QUOTE_NONE, nrows=10000, error_bad_lines=False)
|
||||
|
||||
X_train = X_train[[6, 7]]
|
||||
X_train = pd.concat([X_train, Y_train], axis=1)
|
||||
X_train['row'] = X_train[6] + X_train[0] + X_train[7]
|
||||
|
||||
def train(X_train, Y_train):
|
||||
model = defaultdict(lambda: defaultdict(lambda: 0))
|
||||
for _, (_, row) in enumerate(X_train.iterrows()):
|
||||
text = preprocess(str(row['row']))
|
||||
words = word_tokenize(text)
|
||||
for w1, w2, w3 in trigrams(words, pad_right=True, pad_left=True):
|
||||
if w1 and w2 and w3:
|
||||
model[(w1, w3)][w2] += 1
|
||||
|
||||
for _, w13 in enumerate(model):
|
||||
count = sum(model[w13].values())
|
||||
for w2 in model[w13]:
|
||||
model[w13][w2] += 0.25
|
||||
model[w13][w2] /= float(count + 0.25 + len(w2))
|
||||
|
||||
return model
|
||||
|
||||
def preprocess(row):
|
||||
row = re.sub(r'\p{P}', '', row.lower().replace('-\\n', '').replace('\\n', ' '))
|
||||
return row
|
||||
|
||||
def predict_word(before, after):
|
||||
output = ''
|
||||
p = 0.0
|
||||
Y_pred = dict(Counter(dict(model[before, after])).most_common(7))
|
||||
for key, value in Y_pred.items():
|
||||
p += value
|
||||
output += f'{key}:{value} '
|
||||
if p == 0.0:
|
||||
output = 'the:0.04 be:0.04 to:0.04 and:0.02 not:0.02 or:0.02 a:0.02 :0.8'
|
||||
return output
|
||||
output += f':{max(1 - p, 0.01)}'
|
||||
return output
|
||||
|
||||
def word_gap_prediction(file):
|
||||
X_test = pd.read_csv(f'{file}/in.tsv.xz', sep='\t', header=None, quoting=csv.QUOTE_NONE, error_bad_lines=False)
|
||||
with open(f'{file}/out.tsv', 'w', encoding='utf-8') as output_file:
|
||||
for _, row in X_test.iterrows():
|
||||
before, after = word_tokenize(preprocess(str(row[6]))), word_tokenize(preprocess(str(row[7])))
|
||||
if len(before) < 3 or len(after) < 3:
|
||||
output = 'the:0.04 be:0.04 to:0.04 and:0.02 not:0.02 or:0.02 a:0.02 :0.8'
|
||||
else:
|
||||
output = predict_word(before[-1], after[0])
|
||||
output_file.write(output + '\n')
|
||||
|
||||
model = train(X_train, Y_train)
|
||||
word_gap_prediction('dev-0')
|
||||
word_gap_prediction('test-A')
|
7414
test-A/out.tsv
Normal file
7414
test-A/out.tsv
Normal file
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user