This commit is contained in:
s434766 2021-04-10 13:22:11 +02:00
parent 839e258785
commit 0bcff8ff05
5 changed files with 96 additions and 17 deletions

9
Dockerfile Normal file
View File

@ -0,0 +1,9 @@
FROM ubuntu:latest
RUN apt update && apt install -y python3-pip --no-install-recommends && pip3 install numpy && pip3 install pandas && pip3 install wget && pip3 install scikit-learn && rm -rf /var/lib/apt/lists/*
WORKDIR /app
COPY ./create.py ./
COPY ./stats.py ./

23
Jenkinsfile vendored
View File

@ -1,5 +1,7 @@
pipeline {
agent any
agent {
dockerfile true
}
parameters {
string (
defaultValue: '40',
@ -9,23 +11,22 @@ pipeline {
)
}
stages {
stage('Docker'){
steps{
sh 'python3 ./create.py'
}
}
stage('checkout: Check out from version control') {
steps {
git 'https://git.wmi.amu.edu.pl/s434766/ium_434766.git'
}
}
stage('sh: Shell Script') {
steps {
sh 'chmod +x script.sh'
sh './script.sh ${CUTOFF}'
}
}
stage('archiveArtifacts') {
steps {
archiveArtifacts 'scriptTest.csv'
archiveArtifacts 'scriptDev.csv'
archiveArtifacts 'scriptTrain.csv'
archiveArtifacts 'lab3.csv'
archiveArtifacts 'data_val.csv'
archiveArtifacts 'data_test.csv'
archiveArtifacts 'data_train.csv'
archiveArtifacts 'healthcare-dataset-stroke-data.csv'
}
}
}

View File

@ -9,10 +9,14 @@ pipeline {
copyArtifacts fingerprintArtifacts: true, projectName: 's434766-create-dataset', selector: buildParameter('BUILD_SELECTOR')
}
}
stage('sh: Shell Script') {
stage('Docker image'){
agent {
docker {
image 'owczarczykp/ium_s434766'
}
}
steps {
sh 'chmod +x copyArtiJenkins/script2.sh'
sh './copyArtiJenkins/script2.sh'
sh 'python3 ./stats.py > stats.txt'
}
}
stage('archiveArtifacts') {

50
create.py Normal file
View File

@ -0,0 +1,50 @@
import os
import numpy as np
import pandas as pd
import wget
from sklearn.preprocessing import MinMaxScaler
from sklearn.model_selection import train_test_split
def downloadCSV():
url = 'https://git.wmi.amu.edu.pl/s434766/ium_434766/raw/branch/master/healthcare-dataset-stroke-data.csv'
wget.download(url, out='healthcare-dataset-stroke-data.csv', bar=None)
def dropNaN():
data = pd.read_csv('healthcare-dataset-stroke-data.csv')
data = data.dropna()
return data
def NormalizeData(data):
data = data.astype({"age": np.int64})
for col in data.columns:
if data[col].dtype == object: # STRINGS TO LOWERCASE
data[col] = data[col].str.lower()
if data[col].dtype == np.float64: # FLOATS TO VALUES IN [ 0, 1]
dataReshaped = data[col].values.reshape(-1,1)
scaler = MinMaxScaler(feature_range=(0, 1))
data[col] = scaler.fit_transform(dataReshaped)
if col == 'ever_married': # YES/NO TO 1/0
data[col] = data[col].map(dict(yes=1, no=0))
if col == 'smoking_status':
data[col] = data[col].str.replace(" ", "_")
if col == 'work_type':
data[col] = data[col].str.replace("-", "_")
return data
def saveToCSV(data1,data2,data3):
data1.to_csv("data_train.csv", index=False)
data2.to_csv("data_test.csv",index=False)
data3.to_csv("data_val.csv",index=False)
downloadCSV()
data = dropNaN()
data = NormalizeData(data)
data_train, data_test = train_test_split(data, test_size=0.2, random_state=1)
data_train, data_val = train_test_split(data_train, test_size=0.25, random_state=1) ## Twice to get 0.6, 0.2, 0.2
saveToCSV(data_train,data_test,data_val)

15
stats.py Normal file
View File

@ -0,0 +1,15 @@
import pandas as pd
def describeDataset(dt, dt2, dv):
data = pd.read_csv('healthcare-dataset-stroke-data.csv')
print("Whole dataset size: ", data.size)
print("Train dataset size: ", dt.size)
print("Test dataset size: ", dt2.size)
print("Validate dataset size: ", dv.size)
print(data.describe(include='all'))
data_train = pd.read_csv('data_train.csv')
data_test = pd.read_csv('data_test.csv')
data_val = pd.read_csv('data_val.csv')
describeDataset(data_train,data_test,data_val)