LAB 5 FRAMEWORK PYTORCH
This commit is contained in:
parent
e380a345e3
commit
26b8d85650
@ -1,10 +1,10 @@
|
|||||||
FROM ubuntu:latest
|
FROM ubuntu:latest
|
||||||
|
|
||||||
RUN apt update && apt install -y python3-pip && pip3 install setuptools && pip3 install numpy && pip3 install pandas && pip3 install wget && pip3 install scikit-learn && rm -rf /var/lib/apt/lists/*
|
RUN apt update && apt install -y python3-pip && pip3 install setuptools && pip3 install numpy && pip3 install pandas && pip3 install wget && pip3 install scikit-learn && pip3 install torch==1.8.1+cu102 torchvision==0.9.1+cu102 torchaudio===0.8.1 -f https://download.pytorch.org/whl/torch_stable.html &&rm -rf /var/lib/apt/lists/*
|
||||||
|
|
||||||
WORKDIR /app
|
WORKDIR /app
|
||||||
|
|
||||||
COPY ./create.py ./
|
COPY ./create.py ./
|
||||||
COPY ./stats.py ./
|
COPY ./stats.py ./
|
||||||
|
COPY ./stroke-pytorch.py ./
|
||||||
|
|
||||||
|
2
Jenkinsfile
vendored
2
Jenkinsfile
vendored
@ -14,6 +14,7 @@ pipeline {
|
|||||||
stage('Docker'){
|
stage('Docker'){
|
||||||
steps{
|
steps{
|
||||||
sh 'python3 ./create.py'
|
sh 'python3 ./create.py'
|
||||||
|
sh 'python3 "./stroke-pytorch.py" > model.txt'
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
stage('checkout: Check out from version control') {
|
stage('checkout: Check out from version control') {
|
||||||
@ -23,6 +24,7 @@ pipeline {
|
|||||||
}
|
}
|
||||||
stage('archiveArtifacts') {
|
stage('archiveArtifacts') {
|
||||||
steps {
|
steps {
|
||||||
|
archiveArtifacts 'model.txt'
|
||||||
archiveArtifacts 'data_val.csv'
|
archiveArtifacts 'data_val.csv'
|
||||||
archiveArtifacts 'data_test.csv'
|
archiveArtifacts 'data_test.csv'
|
||||||
archiveArtifacts 'data_train.csv'
|
archiveArtifacts 'data_train.csv'
|
||||||
|
276
lab5.ipynb
Normal file
276
lab5.ipynb
Normal file
File diff suppressed because one or more lines are too long
69
stroke-pytorch.py
Normal file
69
stroke-pytorch.py
Normal file
@ -0,0 +1,69 @@
|
|||||||
|
import torch
|
||||||
|
import torch.nn.functional as F
|
||||||
|
from torch import nn
|
||||||
|
from torch.autograd import Variable
|
||||||
|
import torchvision.transforms as transforms
|
||||||
|
from sklearn.model_selection import train_test_split
|
||||||
|
from sklearn.preprocessing import MinMaxScaler
|
||||||
|
from sklearn.metrics import accuracy_score
|
||||||
|
import numpy as np
|
||||||
|
import pandas as pd
|
||||||
|
|
||||||
|
class LogisticRegressionModel(nn.Module):
|
||||||
|
def __init__(self, input_dim, output_dim):
|
||||||
|
super(LogisticRegressionModel, self).__init__()
|
||||||
|
self.linear = nn.Linear(input_dim, output_dim)
|
||||||
|
self.sigmoid = nn.Sigmoid()
|
||||||
|
def forward(self, x):
|
||||||
|
out = self.linear(x)
|
||||||
|
return self.sigmoid(out)
|
||||||
|
|
||||||
|
data_train = pd.read_csv("data_train.csv")
|
||||||
|
data_test = pd.read_csv("data_test.csv")
|
||||||
|
data_val = pd.read_csv("data_val.csv")
|
||||||
|
FEATURES = ['age','hypertension','heart_disease','ever_married', 'avg_glucose_level', 'bmi']
|
||||||
|
|
||||||
|
x_train = data_train[FEATURES].astype(np.float32)
|
||||||
|
y_train = data_train['stroke'].astype(np.float32)
|
||||||
|
|
||||||
|
x_test = data_test[FEATURES].astype(np.float32)
|
||||||
|
y_test = data_test['stroke'].astype(np.float32)
|
||||||
|
|
||||||
|
fTrain = torch.from_numpy(x_train.values)
|
||||||
|
tTrain = torch.from_numpy(y_train.values.reshape(2945,1))
|
||||||
|
|
||||||
|
fTest= torch.from_numpy(x_test.values)
|
||||||
|
tTest = torch.from_numpy(y_test.values)
|
||||||
|
|
||||||
|
batch_size = 95
|
||||||
|
n_iters = 1000
|
||||||
|
num_epochs = int(n_iters / (len(x_train) / batch_size))
|
||||||
|
learning_rate = 0.001
|
||||||
|
input_dim = 6
|
||||||
|
output_dim = 1
|
||||||
|
|
||||||
|
model = LogisticRegressionModel(input_dim, output_dim)
|
||||||
|
|
||||||
|
criterion = torch.nn.BCELoss(reduction='mean')
|
||||||
|
optimizer = torch.optim.SGD(model.parameters(), lr = learning_rate)
|
||||||
|
|
||||||
|
for epoch in range(num_epochs):
|
||||||
|
print ("Epoch #",epoch)
|
||||||
|
model.train()
|
||||||
|
optimizer.zero_grad()
|
||||||
|
# Forward pass
|
||||||
|
y_pred = model(fTrain)
|
||||||
|
# Compute Loss
|
||||||
|
loss = criterion(y_pred, tTrain)
|
||||||
|
print(loss.item())
|
||||||
|
# Backward pass
|
||||||
|
loss.backward()
|
||||||
|
optimizer.step()
|
||||||
|
|
||||||
|
|
||||||
|
y_pred = model(fTest)
|
||||||
|
print("predicted Y value: ", y_pred.data)
|
||||||
|
|
||||||
|
print ("The accuracy is", accuracy_score(tTest, np.argmax(y_pred.detach().numpy(), axis=1)))
|
||||||
|
|
||||||
|
torch.save(model, 'stroke.pkl')
|
BIN
stroke.pkl
Normal file
BIN
stroke.pkl
Normal file
Binary file not shown.
Loading…
Reference in New Issue
Block a user