sacred
This commit is contained in:
parent
e94a14e8e7
commit
a5b9eb3882
@ -34,7 +34,7 @@ pipeline {
|
||||
stage('sendMail') {
|
||||
steps{
|
||||
emailext body: currentBuild.result ?: 'SUCCESS',
|
||||
subject: 's434766 training',
|
||||
subject: 's434766 evaluation',
|
||||
to: '26ab8f35.uam.onmicrosoft.com@emea.teams.ms'
|
||||
}
|
||||
}
|
||||
|
@ -9,9 +9,14 @@ from sklearn.preprocessing import MinMaxScaler
|
||||
from sklearn.metrics import accuracy_score
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
|
||||
from sacred import Experiment
|
||||
from sacred.observers import FileStorageObserver
|
||||
np.set_printoptions(suppress=False)
|
||||
|
||||
ex = Experiment("stroke-pytorch", interactive=True)
|
||||
ex.observers.append(FileStorageObserver('ium_s434766O_files'))
|
||||
ex.observers.append(MongoObserver(url='mongodb://mongo_user:mongo_password_IUM_2021@localhost:27017',
|
||||
db_name='sacred'))
|
||||
class LogisticRegressionModel(nn.Module):
|
||||
def __init__(self, input_dim, output_dim):
|
||||
super(LogisticRegressionModel, self).__init__()
|
||||
@ -21,49 +26,54 @@ class LogisticRegressionModel(nn.Module):
|
||||
out = self.linear(x)
|
||||
return self.sigmoid(out)
|
||||
|
||||
data_train = pd.read_csv("data_train.csv")
|
||||
data_test = pd.read_csv("data_test.csv")
|
||||
data_val = pd.read_csv("data_val.csv")
|
||||
FEATURES = ['age','hypertension','heart_disease','ever_married', 'avg_glucose_level', 'bmi']
|
||||
@ex.main
|
||||
def my_main(_log):
|
||||
data_train = pd.read_csv("data_train.csv")
|
||||
data_test = pd.read_csv("data_test.csv")
|
||||
data_val = pd.read_csv("data_val.csv")
|
||||
FEATURES = ['age','hypertension','heart_disease','ever_married', 'avg_glucose_level', 'bmi']
|
||||
|
||||
x_train = data_train[FEATURES].astype(np.float32)
|
||||
y_train = data_train['stroke'].astype(np.float32)
|
||||
x_train = data_train[FEATURES].astype(np.float32)
|
||||
y_train = data_train['stroke'].astype(np.float32)
|
||||
|
||||
x_test = data_test[FEATURES].astype(np.float32)
|
||||
y_test = data_test['stroke'].astype(np.float32)
|
||||
x_test = data_test[FEATURES].astype(np.float32)
|
||||
y_test = data_test['stroke'].astype(np.float32)
|
||||
|
||||
fTrain = torch.from_numpy(x_train.values)
|
||||
tTrain = torch.from_numpy(y_train.values.reshape(2945,1))
|
||||
fTrain = torch.from_numpy(x_train.values)
|
||||
tTrain = torch.from_numpy(y_train.values.reshape(2945,1))
|
||||
|
||||
fTest= torch.from_numpy(x_test.values)
|
||||
tTest = torch.from_numpy(y_test.values)
|
||||
fTest= torch.from_numpy(x_test.values)
|
||||
tTest = torch.from_numpy(y_test.values)
|
||||
|
||||
batch_size = int(sys.argv[1]) if len(sys.argv) > 1 else 16
|
||||
num_epochs = int(sys.argv[2]) if len(sys.argv) > 2 else 5
|
||||
learning_rate = 0.001
|
||||
input_dim = 6
|
||||
output_dim = 1
|
||||
batch_size = int(sys.argv[1]) if len(sys.argv) > 1 else 16
|
||||
num_epochs = int(sys.argv[2]) if len(sys.argv) > 2 else 5
|
||||
learning_rate = 0.001
|
||||
input_dim = 6
|
||||
output_dim = 1
|
||||
info_params = "Batch size = " + str(batch_size) + " Epochs = " + str(num_epochs)
|
||||
_log.info(info_params)
|
||||
model = LogisticRegressionModel(input_dim, output_dim)
|
||||
|
||||
model = LogisticRegressionModel(input_dim, output_dim)
|
||||
criterion = torch.nn.BCELoss(reduction='mean')
|
||||
optimizer = torch.optim.SGD(model.parameters(), lr = learning_rate)
|
||||
|
||||
criterion = torch.nn.BCELoss(reduction='mean')
|
||||
optimizer = torch.optim.SGD(model.parameters(), lr = learning_rate)
|
||||
for epoch in range(num_epochs):
|
||||
# print ("Epoch #",epoch)
|
||||
model.train()
|
||||
optimizer.zero_grad()
|
||||
# Forward pass
|
||||
y_pred = model(fTrain)
|
||||
# Compute Loss
|
||||
loss = criterion(y_pred, tTrain)
|
||||
# print(loss.item())
|
||||
# Backward pass
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
info_loss = "Last loss = " + str(loss.item())
|
||||
_log.info(info_loss)
|
||||
y_pred = model(fTest)
|
||||
# print("predicted Y value: ", y_pred.data)
|
||||
|
||||
for epoch in range(num_epochs):
|
||||
# print ("Epoch #",epoch)
|
||||
model.train()
|
||||
optimizer.zero_grad()
|
||||
# Forward pass
|
||||
y_pred = model(fTrain)
|
||||
# Compute Loss
|
||||
loss = criterion(y_pred, tTrain)
|
||||
print(loss.item())
|
||||
# Backward pass
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
torch.save(model.state_dict(), 'stroke.pth')
|
||||
|
||||
|
||||
y_pred = model(fTest)
|
||||
print("predicted Y value: ", y_pred.data)
|
||||
|
||||
torch.save(model.state_dict(), 'stroke.pth')
|
||||
ex.run()
|
Loading…
Reference in New Issue
Block a user