sacred3
This commit is contained in:
parent
34e2139417
commit
b3d4c74ecb
@ -2,7 +2,6 @@ FROM ubuntu:latest
|
|||||||
|
|
||||||
RUN apt-get update && apt-get install -y python3-pip && pip3 install setuptools && pip3 install numpy && pip3 install pandas && pip3 install wget && pip3 install scikit-learn && pip3 install matplotlib && rm -rf /var/lib/apt/lists/*
|
RUN apt-get update && apt-get install -y python3-pip && pip3 install setuptools && pip3 install numpy && pip3 install pandas && pip3 install wget && pip3 install scikit-learn && pip3 install matplotlib && rm -rf /var/lib/apt/lists/*
|
||||||
RUN pip3 install torch torchvision torchaudio
|
RUN pip3 install torch torchvision torchaudio
|
||||||
RUN pip3 install sacred
|
|
||||||
WORKDIR /app
|
WORKDIR /app
|
||||||
|
|
||||||
COPY ./../create.py ./
|
COPY ./../create.py ./
|
||||||
|
@ -13,10 +13,10 @@ from sacred import Experiment
|
|||||||
from sacred.observers import FileStorageObserver
|
from sacred.observers import FileStorageObserver
|
||||||
np.set_printoptions(suppress=False)
|
np.set_printoptions(suppress=False)
|
||||||
|
|
||||||
ex = Experiment("stroke-pytorch", interactive=True)
|
# ex = Experiment("stroke-pytorch", interactive=True)
|
||||||
ex.observers.append(FileStorageObserver('ium_s434766O_files'))
|
# ex.observers.append(FileStorageObserver('ium_s434766O_files'))
|
||||||
ex.observers.append(MongoObserver(url='mongodb://mongo_user:mongo_password_IUM_2021@localhost:27017',
|
# ex.observers.append(MongoObserver(url='mongodb://mongo_user:mongo_password_IUM_2021@localhost:27017',
|
||||||
db_name='sacred'))
|
# db_name='sacred'))
|
||||||
class LogisticRegressionModel(nn.Module):
|
class LogisticRegressionModel(nn.Module):
|
||||||
def __init__(self, input_dim, output_dim):
|
def __init__(self, input_dim, output_dim):
|
||||||
super(LogisticRegressionModel, self).__init__()
|
super(LogisticRegressionModel, self).__init__()
|
||||||
@ -26,8 +26,8 @@ class LogisticRegressionModel(nn.Module):
|
|||||||
out = self.linear(x)
|
out = self.linear(x)
|
||||||
return self.sigmoid(out)
|
return self.sigmoid(out)
|
||||||
|
|
||||||
@ex.main
|
# @ex.main
|
||||||
def my_main(_log):
|
# def my_main(_log):
|
||||||
data_train = pd.read_csv("data_train.csv")
|
data_train = pd.read_csv("data_train.csv")
|
||||||
data_test = pd.read_csv("data_test.csv")
|
data_test = pd.read_csv("data_test.csv")
|
||||||
data_val = pd.read_csv("data_val.csv")
|
data_val = pd.read_csv("data_val.csv")
|
||||||
@ -51,7 +51,7 @@ def my_main(_log):
|
|||||||
input_dim = 6
|
input_dim = 6
|
||||||
output_dim = 1
|
output_dim = 1
|
||||||
info_params = "Batch size = " + str(batch_size) + " Epochs = " + str(num_epochs)
|
info_params = "Batch size = " + str(batch_size) + " Epochs = " + str(num_epochs)
|
||||||
_log.info(info_params)
|
# _log.info(info_params)
|
||||||
model = LogisticRegressionModel(input_dim, output_dim)
|
model = LogisticRegressionModel(input_dim, output_dim)
|
||||||
|
|
||||||
criterion = torch.nn.BCELoss(reduction='mean')
|
criterion = torch.nn.BCELoss(reduction='mean')
|
||||||
@ -70,10 +70,10 @@ def my_main(_log):
|
|||||||
loss.backward()
|
loss.backward()
|
||||||
optimizer.step()
|
optimizer.step()
|
||||||
info_loss = "Last loss = " + str(loss.item())
|
info_loss = "Last loss = " + str(loss.item())
|
||||||
_log.info(info_loss)
|
# _log.info(info_loss)
|
||||||
y_pred = model(fTest)
|
y_pred = model(fTest)
|
||||||
# print("predicted Y value: ", y_pred.data)
|
print("predicted Y value: ", y_pred.data)
|
||||||
|
|
||||||
torch.save(model.state_dict(), 'stroke.pth')
|
torch.save(model.state_dict(), 'stroke.pth')
|
||||||
|
|
||||||
ex.run()
|
# ex.run()
|
Loading…
Reference in New Issue
Block a user