sacred
This commit is contained in:
parent
b3d4c74ecb
commit
ee20c96360
@ -2,7 +2,7 @@ FROM ubuntu:latest
|
|||||||
|
|
||||||
RUN apt-get update && apt-get install -y python3-pip && pip3 install setuptools && pip3 install numpy && pip3 install pandas && pip3 install wget && pip3 install scikit-learn && pip3 install matplotlib && rm -rf /var/lib/apt/lists/*
|
RUN apt-get update && apt-get install -y python3-pip && pip3 install setuptools && pip3 install numpy && pip3 install pandas && pip3 install wget && pip3 install scikit-learn && pip3 install matplotlib && rm -rf /var/lib/apt/lists/*
|
||||||
RUN pip3 install torch torchvision torchaudio
|
RUN pip3 install torch torchvision torchaudio
|
||||||
RUN pip3 install sacred
|
RUN pip3 install sacred && pip3 install GitPython
|
||||||
WORKDIR /app
|
WORKDIR /app
|
||||||
|
|
||||||
COPY ./create.py ./
|
COPY ./create.py ./
|
||||||
|
@ -2,6 +2,7 @@ FROM ubuntu:latest
|
|||||||
|
|
||||||
RUN apt-get update && apt-get install -y python3-pip && pip3 install setuptools && pip3 install numpy && pip3 install pandas && pip3 install wget && pip3 install scikit-learn && pip3 install matplotlib && rm -rf /var/lib/apt/lists/*
|
RUN apt-get update && apt-get install -y python3-pip && pip3 install setuptools && pip3 install numpy && pip3 install pandas && pip3 install wget && pip3 install scikit-learn && pip3 install matplotlib && rm -rf /var/lib/apt/lists/*
|
||||||
RUN pip3 install torch torchvision torchaudio
|
RUN pip3 install torch torchvision torchaudio
|
||||||
|
RUN pip3 install sacred && pip3 install GitPython
|
||||||
WORKDIR /app
|
WORKDIR /app
|
||||||
|
|
||||||
COPY ./../create.py ./
|
COPY ./../create.py ./
|
||||||
|
85
sacred-pytorch1.py
Normal file
85
sacred-pytorch1.py
Normal file
@ -0,0 +1,85 @@
|
|||||||
|
import torch
|
||||||
|
import sys
|
||||||
|
import torch.nn.functional as F
|
||||||
|
from torch import nn
|
||||||
|
from sklearn.metrics import accuracy_score, mean_squared_error
|
||||||
|
import numpy as np
|
||||||
|
import pandas as pd
|
||||||
|
from sacred import Experiment
|
||||||
|
from sacred.observers import FileStorageObserver
|
||||||
|
|
||||||
|
np.set_printoptions(suppress=False)
|
||||||
|
|
||||||
|
ex = Experiment("ium_s434766", interactive=False, save_git_info=False)
|
||||||
|
ex.observers.append(FileStorageObserver("ium_s434766/my_runs"))
|
||||||
|
|
||||||
|
@ex.config
|
||||||
|
def my_config():
|
||||||
|
num_epochs = 15
|
||||||
|
batch_size = 16
|
||||||
|
learning_rate = 0.001
|
||||||
|
|
||||||
|
class LogisticRegressionModel(nn.Module):
|
||||||
|
def __init__(self, input_dim, output_dim):
|
||||||
|
super(LogisticRegressionModel, self).__init__()
|
||||||
|
self.linear = nn.Linear(input_dim, output_dim)
|
||||||
|
self.sigmoid = nn.Sigmoid()
|
||||||
|
def forward(self, x):
|
||||||
|
out = self.linear(x)
|
||||||
|
return self.sigmoid(out)
|
||||||
|
|
||||||
|
@ex.capture
|
||||||
|
def train(num_epochs, batch_size, learning_rate, _run):
|
||||||
|
data_train = pd.read_csv("data_train.csv")
|
||||||
|
data_test = pd.read_csv("data_test.csv")
|
||||||
|
FEATURES = ['age','hypertension','heart_disease','ever_married', 'avg_glucose_level', 'bmi']
|
||||||
|
|
||||||
|
x_train = data_train[FEATURES].astype(np.float32)
|
||||||
|
y_train = data_train['stroke'].astype(np.float32)
|
||||||
|
|
||||||
|
x_test = data_test[FEATURES].astype(np.float32)
|
||||||
|
y_test = data_test['stroke'].astype(np.float32)
|
||||||
|
|
||||||
|
fTrain = torch.from_numpy(x_train.values)
|
||||||
|
tTrain = torch.from_numpy(y_train.values.reshape(2945,1))
|
||||||
|
|
||||||
|
fTest= torch.from_numpy(x_test.values)
|
||||||
|
tTest = torch.from_numpy(y_test.values)
|
||||||
|
|
||||||
|
|
||||||
|
input_dim = 6
|
||||||
|
output_dim = 1
|
||||||
|
info_params = "Batch size = " + str(batch_size) + " Epochs = " + str(num_epochs)
|
||||||
|
_run.info(info_params)
|
||||||
|
model = LogisticRegressionModel(input_dim, output_dim)
|
||||||
|
|
||||||
|
criterion = torch.nn.BCELoss(reduction='mean')
|
||||||
|
optimizer = torch.optim.SGD(model.parameters(), lr = learning_rate)
|
||||||
|
|
||||||
|
for epoch in range(num_epochs):
|
||||||
|
# print ("Epoch #",epoch)
|
||||||
|
model.train()
|
||||||
|
optimizer.zero_grad()
|
||||||
|
# Forward pass
|
||||||
|
y_pred = model(fTrain)
|
||||||
|
# Compute Loss
|
||||||
|
loss = criterion(y_pred, tTrain)
|
||||||
|
# print(loss.item())
|
||||||
|
# Backward pass
|
||||||
|
loss.backward()
|
||||||
|
optimizer.step()
|
||||||
|
|
||||||
|
info_loss = "Last loss = " + str(loss.item())
|
||||||
|
_run.info(info_loss)
|
||||||
|
y_pred = model(fTest)
|
||||||
|
print("predicted Y value: ", y_pred.data)
|
||||||
|
|
||||||
|
torch.save(model.state_dict(), 'stroke.pth')
|
||||||
|
|
||||||
|
|
||||||
|
@ex.automain
|
||||||
|
def my_main(num_epochs, batch_size, learning_rate, _run):
|
||||||
|
train()
|
||||||
|
|
||||||
|
r = ex.run()
|
||||||
|
ex.add_artifact("stroke_model/stroke.pth")
|
86
sacred-pytorch2.py
Normal file
86
sacred-pytorch2.py
Normal file
@ -0,0 +1,86 @@
|
|||||||
|
import torch
|
||||||
|
import sys
|
||||||
|
import torch.nn.functional as F
|
||||||
|
from torch import nn
|
||||||
|
from sklearn.metrics import accuracy_score, mean_squared_error
|
||||||
|
import numpy as np
|
||||||
|
import pandas as pd
|
||||||
|
from sacred import Experiment
|
||||||
|
from sacred.observers import MongoObserver
|
||||||
|
|
||||||
|
np.set_printoptions(suppress=False)
|
||||||
|
|
||||||
|
ex = Experiment("ium_s434766", interactive=False, save_git_info=False)
|
||||||
|
ex.observers.append(MongoObserver(url='mongodb://mongo_user:mongo_password_IUM_2021@172.17.0.1:27017',
|
||||||
|
db_name='sacred'))
|
||||||
|
|
||||||
|
@ex.config
|
||||||
|
def my_config():
|
||||||
|
num_epochs = 15
|
||||||
|
batch_size = 16
|
||||||
|
learning_rate = 0.001
|
||||||
|
|
||||||
|
class LogisticRegressionModel(nn.Module):
|
||||||
|
def __init__(self, input_dim, output_dim):
|
||||||
|
super(LogisticRegressionModel, self).__init__()
|
||||||
|
self.linear = nn.Linear(input_dim, output_dim)
|
||||||
|
self.sigmoid = nn.Sigmoid()
|
||||||
|
def forward(self, x):
|
||||||
|
out = self.linear(x)
|
||||||
|
return self.sigmoid(out)
|
||||||
|
|
||||||
|
@ex.capture
|
||||||
|
def train(num_epochs, batch_size, learning_rate, _run):
|
||||||
|
data_train = pd.read_csv("data_train.csv")
|
||||||
|
data_test = pd.read_csv("data_test.csv")
|
||||||
|
FEATURES = ['age','hypertension','heart_disease','ever_married', 'avg_glucose_level', 'bmi']
|
||||||
|
|
||||||
|
x_train = data_train[FEATURES].astype(np.float32)
|
||||||
|
y_train = data_train['stroke'].astype(np.float32)
|
||||||
|
|
||||||
|
x_test = data_test[FEATURES].astype(np.float32)
|
||||||
|
y_test = data_test['stroke'].astype(np.float32)
|
||||||
|
|
||||||
|
fTrain = torch.from_numpy(x_train.values)
|
||||||
|
tTrain = torch.from_numpy(y_train.values.reshape(2945,1))
|
||||||
|
|
||||||
|
fTest= torch.from_numpy(x_test.values)
|
||||||
|
tTest = torch.from_numpy(y_test.values)
|
||||||
|
|
||||||
|
|
||||||
|
input_dim = 6
|
||||||
|
output_dim = 1
|
||||||
|
info_params = "Batch size = " + str(batch_size) + " Epochs = " + str(num_epochs)
|
||||||
|
_run.info(info_params)
|
||||||
|
model = LogisticRegressionModel(input_dim, output_dim)
|
||||||
|
|
||||||
|
criterion = torch.nn.BCELoss(reduction='mean')
|
||||||
|
optimizer = torch.optim.SGD(model.parameters(), lr = learning_rate)
|
||||||
|
|
||||||
|
for epoch in range(num_epochs):
|
||||||
|
# print ("Epoch #",epoch)
|
||||||
|
model.train()
|
||||||
|
optimizer.zero_grad()
|
||||||
|
# Forward pass
|
||||||
|
y_pred = model(fTrain)
|
||||||
|
# Compute Loss
|
||||||
|
loss = criterion(y_pred, tTrain)
|
||||||
|
# print(loss.item())
|
||||||
|
# Backward pass
|
||||||
|
loss.backward()
|
||||||
|
optimizer.step()
|
||||||
|
|
||||||
|
info_loss = "Last loss = " + str(loss.item())
|
||||||
|
_run.info(info_loss)
|
||||||
|
y_pred = model(fTest)
|
||||||
|
print("predicted Y value: ", y_pred.data)
|
||||||
|
|
||||||
|
torch.save(model.state_dict(), 'stroke.pth')
|
||||||
|
|
||||||
|
|
||||||
|
@ex.automain
|
||||||
|
def my_main(num_epochs, batch_size, learning_rate, _run):
|
||||||
|
train()
|
||||||
|
|
||||||
|
r = ex.run()
|
||||||
|
ex.add_artifact("stroke_model/stroke.pth")
|
@ -13,10 +13,7 @@ from sacred import Experiment
|
|||||||
from sacred.observers import FileStorageObserver
|
from sacred.observers import FileStorageObserver
|
||||||
np.set_printoptions(suppress=False)
|
np.set_printoptions(suppress=False)
|
||||||
|
|
||||||
# ex = Experiment("stroke-pytorch", interactive=True)
|
|
||||||
# ex.observers.append(FileStorageObserver('ium_s434766O_files'))
|
|
||||||
# ex.observers.append(MongoObserver(url='mongodb://mongo_user:mongo_password_IUM_2021@localhost:27017',
|
|
||||||
# db_name='sacred'))
|
|
||||||
class LogisticRegressionModel(nn.Module):
|
class LogisticRegressionModel(nn.Module):
|
||||||
def __init__(self, input_dim, output_dim):
|
def __init__(self, input_dim, output_dim):
|
||||||
super(LogisticRegressionModel, self).__init__()
|
super(LogisticRegressionModel, self).__init__()
|
||||||
@ -26,8 +23,7 @@ class LogisticRegressionModel(nn.Module):
|
|||||||
out = self.linear(x)
|
out = self.linear(x)
|
||||||
return self.sigmoid(out)
|
return self.sigmoid(out)
|
||||||
|
|
||||||
# @ex.main
|
|
||||||
# def my_main(_log):
|
|
||||||
data_train = pd.read_csv("data_train.csv")
|
data_train = pd.read_csv("data_train.csv")
|
||||||
data_test = pd.read_csv("data_test.csv")
|
data_test = pd.read_csv("data_test.csv")
|
||||||
data_val = pd.read_csv("data_val.csv")
|
data_val = pd.read_csv("data_val.csv")
|
||||||
@ -50,8 +46,7 @@ num_epochs = int(sys.argv[2]) if len(sys.argv) > 2 else 5
|
|||||||
learning_rate = 0.001
|
learning_rate = 0.001
|
||||||
input_dim = 6
|
input_dim = 6
|
||||||
output_dim = 1
|
output_dim = 1
|
||||||
info_params = "Batch size = " + str(batch_size) + " Epochs = " + str(num_epochs)
|
|
||||||
# _log.info(info_params)
|
|
||||||
model = LogisticRegressionModel(input_dim, output_dim)
|
model = LogisticRegressionModel(input_dim, output_dim)
|
||||||
|
|
||||||
criterion = torch.nn.BCELoss(reduction='mean')
|
criterion = torch.nn.BCELoss(reduction='mean')
|
||||||
@ -69,11 +64,8 @@ for epoch in range(num_epochs):
|
|||||||
# Backward pass
|
# Backward pass
|
||||||
loss.backward()
|
loss.backward()
|
||||||
optimizer.step()
|
optimizer.step()
|
||||||
info_loss = "Last loss = " + str(loss.item())
|
|
||||||
# _log.info(info_loss)
|
|
||||||
y_pred = model(fTest)
|
y_pred = model(fTest)
|
||||||
print("predicted Y value: ", y_pred.data)
|
print("predicted Y value: ", y_pred.data)
|
||||||
|
|
||||||
torch.save(model.state_dict(), 'stroke.pth')
|
torch.save(model.state_dict(), 'stroke.pth')
|
||||||
|
|
||||||
# ex.run()
|
|
Loading…
Reference in New Issue
Block a user