pipeline { agent { dockerfile true } parameters{ buildSelector( defaultSelector: lastSuccessful(), description: 'Which build to use for copying artifacts', name: 'WHICH_BUILD' ) string( defaultValue: '16', description: 'batch size', name: 'BATCH_SIZE' ) string( defaultValue: '15', description: 'epochs', name: 'EPOCHS' ) stages { stage('checkout') { steps { copyArtifacts(fingerprintArtifacts: true, projectName: 's434766-create-dataset', selector: buildParameter('WHICH_BUILD')) } } stage('Docker'){ steps{ sh 'python3 "./stroke-pytorch.py" ${BATCH_SIZE} ${EPOCHS} > pred.txt' } } stage('archiveArtifacts') { steps { archiveArtifacts 'pred.txt' archiveArtifacts 'stroke.pkl' } post { success { emailext body: 'Training of stroke predictions is finished', subject: 's434766 training finished', to: '26ab8f35.uam.onmicrosoft.com@emea.teams.ms' } } } } }