86 lines
2.6 KiB
Python
86 lines
2.6 KiB
Python
import torch
|
|
import sys
|
|
import torch.nn.functional as F
|
|
from torch import nn
|
|
from sklearn.metrics import accuracy_score, mean_squared_error
|
|
import numpy as np
|
|
import pandas as pd
|
|
from sacred import Experiment
|
|
from sacred.observers import MongoObserver
|
|
|
|
np.set_printoptions(suppress=False)
|
|
|
|
ex = Experiment("ium_s434766", interactive=False, save_git_info=False)
|
|
ex.observers.append(MongoObserver(url='mongodb://mongo_user:mongo_password_IUM_2021@172.17.0.1:27017',
|
|
db_name='sacred'))
|
|
|
|
@ex.config
|
|
def my_config():
|
|
num_epochs = 15
|
|
batch_size = 16
|
|
learning_rate = 0.001
|
|
|
|
class LogisticRegressionModel(nn.Module):
|
|
def __init__(self, input_dim, output_dim):
|
|
super(LogisticRegressionModel, self).__init__()
|
|
self.linear = nn.Linear(input_dim, output_dim)
|
|
self.sigmoid = nn.Sigmoid()
|
|
def forward(self, x):
|
|
out = self.linear(x)
|
|
return self.sigmoid(out)
|
|
|
|
@ex.capture
|
|
def train(num_epochs, batch_size, learning_rate, _log):
|
|
data_train = pd.read_csv("data_train.csv")
|
|
data_test = pd.read_csv("data_test.csv")
|
|
FEATURES = ['age','hypertension','heart_disease','ever_married', 'avg_glucose_level', 'bmi']
|
|
|
|
x_train = data_train[FEATURES].astype(np.float32)
|
|
y_train = data_train['stroke'].astype(np.float32)
|
|
|
|
x_test = data_test[FEATURES].astype(np.float32)
|
|
y_test = data_test['stroke'].astype(np.float32)
|
|
|
|
fTrain = torch.from_numpy(x_train.values)
|
|
tTrain = torch.from_numpy(y_train.values.reshape(2945,1))
|
|
|
|
fTest= torch.from_numpy(x_test.values)
|
|
tTest = torch.from_numpy(y_test.values)
|
|
|
|
|
|
input_dim = 6
|
|
output_dim = 1
|
|
info_params = "Batch size = " + str(batch_size) + " Epochs = " + str(num_epochs)
|
|
_log.info(info_params)
|
|
model = LogisticRegressionModel(input_dim, output_dim)
|
|
|
|
criterion = torch.nn.BCELoss(reduction='mean')
|
|
optimizer = torch.optim.SGD(model.parameters(), lr = learning_rate)
|
|
|
|
for epoch in range(num_epochs):
|
|
# print ("Epoch #",epoch)
|
|
model.train()
|
|
optimizer.zero_grad()
|
|
# Forward pass
|
|
y_pred = model(fTrain)
|
|
# Compute Loss
|
|
loss = criterion(y_pred, tTrain)
|
|
# print(loss.item())
|
|
# Backward pass
|
|
loss.backward()
|
|
optimizer.step()
|
|
|
|
info_loss = "Last loss = " + str(loss.item())
|
|
_log.info(info_loss)
|
|
y_pred = model(fTest)
|
|
# print("predicted Y value: ", y_pred.data)
|
|
|
|
torch.save(model.state_dict(), 'stroke.pth')
|
|
|
|
|
|
@ex.automain
|
|
def my_main(num_epochs, batch_size, learning_rate, _run):
|
|
train()
|
|
|
|
r = ex.run()
|
|
ex.add_artifact("stroke_model/stroke.pth") |