import gzip import io import pandas as pd import numpy as np from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.feature_extraction.text import CountVectorizer from sklearn.naive_bayes import MultinomialNB from sklearn.pipeline import make_pipeline from sklearn.metrics import accuracy_score def read_data_gz(baseUrl): f = gzip.open(baseUrl,'r') data_unzip = f.read() data = pd.read_table(io.StringIO(data_unzip.decode('utf-8')), error_bad_lines=False, header= None) return data baseUrl = '/home/przemek/ekstrakcja/sport-text-classification-ball-ISI-public/' data = read_data_gz(baseUrl + 'train/train.tsv.gz') y_train = data[0].values x_train = data[1].values model = make_pipeline(TfidfVectorizer(), MultinomialNB()) model.fit(x_train, y_train) # dev-0 x_dev = pd.read_table(baseUrl + 'dev-0/in.tsv', error_bad_lines=False, header= None) x_dev = x_dev[0].values y_pred = model.predict(x_dev) y_pred.tofile(baseUrl + 'dev-0/out.tsv', sep='\n') # -------------- # test-A x_testA = pd.read_table(baseUrl + '/test-A/in.tsv', error_bad_lines=False, header= None) x_testA= x_testA[0].values y_predA = model.predict(x_testA) y_predA.tofile(baseUrl + 'test-A/out.tsv', sep='\n') # --------------