Merge remote-tracking branch 'origin/master' into graph-styling-and-mapping-data

This commit is contained in:
Michał Romaszkin 2020-06-13 14:47:10 +02:00
commit 192c52f587
11 changed files with 349 additions and 68 deletions

50
backend/edumaticParser.py Normal file
View File

@ -0,0 +1,50 @@
#!/usr/bin/env python3
import argparse
from bs4 import BeautifulSoup
from postmarkup import render_bbcode
import html
import json
import re
# arguments
parser = argparse.ArgumentParser(description='Process some edumatic xml files.')
parser.add_argument('filename', help='xml forum file')
args = parser.parse_args()
# make a soup
with open(args.filename, 'rb') as forum:
soup = BeautifulSoup(forum, "xml")
# put json together
out = {}
out['id'] = re.search(r'ID: (\d+)', soup.group.title.text).group(1)
out['name'] = soup.group.table.find('string').text
out['discussions'] = []
did = 50
pid = did + 1
# we ignore first table, and then rules
for d in soup.group.find_all('table')[4::2]:
posts = []
for p in d.find_all('row'):
text = html.unescape(p.find_all('string')[1].text)
paragraphs = [render_bbcode(x) for x in text.splitlines()]
posts.append({
'id': pid,
'parent': pid - 1,
'author': p.find_all('string')[2].text,
'message': [x for x in paragraphs if x]
})
pid = pid + 1
out['discussions'].append({
'id' : did,
'title': d.row.find('string').text,
'first_post': did + 1,
'posts': posts
})
did = did + 50
pid = did + 1
with open('parsed.json', 'w', encoding='utf-8') as outfile:
json.dump(out, outfile, ensure_ascii=False, indent=2)

148
backend/webapp/model.py Normal file
View File

@ -0,0 +1,148 @@
import pandas as pd
from io import StringIO
import matplotlib.pyplot as plt
from sklearn.feature_extraction.text import TfidfVectorizer
import numpy as np
from sklearn.svm import LinearSVC
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfTransformer
from sklearn.metrics import accuracy_score
import seaborn as sns
from sklearn.metrics import confusion_matrix
import string
import re
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import precision_recall_fscore_support as score
import featuretools as ft
import joblib
# Importing data and selecting desired columns
df = pd.read_csv('corp.tsv', sep='\t', encoding='utf-8')
print(df['label'].value_counts())
df['index'] = df.index
columns_titles = ["index", "id", "body_text", "label"]
df=df.reindex(columns=columns_titles)
col = ['index','body_text', 'label']
df = df[col]
df = df[pd.notnull(df['body_text'])]
df.columns = ['index','body_text', 'label']
duplicateDFRow = df[df.duplicated(['body_text'])]
# Factorizing labels for integer values
df['label_id'] = df['label'].factorize()[0]
label_id_df = df[['label', 'label_id']].drop_duplicates().sort_values('label_id')
label_to_id = dict(label_id_df.values)
id_to_label = dict(label_id_df[['label_id', 'label']].values)
# Sampling data
#from imblearn.over_sampling import RandomOverSampler
#from imblearn.under_sampling import RandomUnderSampler
#def resample(df, method):
# """Resamples df using method with .fit_resample()
#
# Args:
# df (DataFrame): Fraud data
# method (object): Resampler with .fit_resample() method
# Retuns:
# resampled_df (DataFrame): Resampled DataFrame
# """
# target = df.pop('label_id')
#
# processed_x, processed_y = method.fit_resample(df, target)
#
# cols = list(df.columns) + ["label_id"]
#
# pdf_x = pd.DataFrame(processed_x, columns=df.columns)
# pdf_y = pd.DataFrame(processed_y, columns=['label_id'])
# resampled_df = pd.concat([pdf_x, pdf_y], axis=1)
#
# return resampled_df
#RUS = RandomUnderSampler(sampling_strategy={0: 650}, random_state=42)
#rus_resampled = resample(df, RUS)
#df = rus_resampled
# Feature engineering
def count_punct(text):
count = sum([1 for char in text if char in string.punctuation])
return round(count/(len(text) - text.count(" ")), 3)*100
df['body_len'] = df['body_text'].apply(lambda x: len(x) - x.count(" "))
df['punct%'] = df['body_text'].apply(lambda x: count_punct(x))
#es = ft.EntitySet(id="text_data")
#es = es.entity_from_dataframe(entity_id="data",
# index='index',
# dataframe=df)
#from nlp_primitives import (
# DiversityScore,
# LSA,
# MeanCharactersPerWord,
# PartOfSpeechCount,
# PolarityScore,
# PunctuationCount,
# StopwordCount,
# TitleWordCount,
# UniversalSentenceEncoder,
# UpperCaseCount)
#trans = [DiversityScore,
# MeanCharactersPerWord,
# TitleWordCount,
# LSA,
# PartOfSpeechCount,
# UniversalSentenceEncoder,
# UpperCaseCount]
#feature_matrix, feature_defs = ft.dfs(entityset=es,
# target_entity='data',
# verbose=True,
# trans_primitives=trans,
# max_depth=4)
#feature_matrix.drop(["body_len"], axis=1, inplace=True)
#feature_matrix.drop(["punct%"], axis=1, inplace=True)
# Vectorizing data
def clean_text(text):
text = "".join([word.lower() for word in text if word not in string.punctuation])
tokens = re.split('\W+', text)
text = [word for word in tokens]
return text
#tfidf = TfidfVectorizer(analyzer=clean_text)
tfidf = TfidfVectorizer(analyzer=clean_text,sublinear_tf=True, min_df=10, max_features=None, norm='l2', encoding='utf-8', ngram_range=(1,2))
transformed = tfidf.fit_transform(df.body_text)
joblib.dump(tfidf.vocabulary_, 'vocabulary.pkl')
#features = tfidf.fit_transform(df.body_text).toarray()
features = pd.concat([df[['body_len', 'punct%']].reset_index(drop=True),
pd.DataFrame(transformed.toarray()).reset_index(drop=True)], axis=1)
#dataset = pd.concat([features,feature_matrix.reset_index(drop=True)], axis=1, sort=False)
labels = df.label_id
# Teaching model
model = LogisticRegression(solver='lbfgs', max_iter=7000)
#model = LinearSVC(dual=False)
#model = joblib.load('model.pkl')
X_train, X_test, y_train, y_test, indices_train, indices_test = train_test_split(features, labels, df.index, test_size=0.2, random_state=42)
#model = joblib.load('model.pkl')
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
joblib.dump(model, 'model.pkl')
print("Accuracy of the model: " + str(accuracy_score(y_test, y_pred)*100) + "%")
# Generating confusion matrix
conf_mat = confusion_matrix(y_test, y_pred)
fig, ax = plt.subplots(figsize=(10,10))
sns.heatmap(conf_mat, annot=True, fmt='d',
xticklabels=label_id_df.label.values,
yticklabels=label_id_df.label.values)
plt.ylabel('Actual')
plt.xlabel('Predicted')
plt.show()

73
backend/webapp/predict.py Normal file
View File

@ -0,0 +1,73 @@
import pandas as pd
from joblib import load
import string
import re
import featuretools as ft
from sklearn.feature_extraction.text import TfidfVectorizer, TfidfTransformer, CountVectorizer
id_to_labels = load('labels.pkl')
data = open('testdata.txt').read().splitlines()
df = pd.DataFrame(data, columns=["body_text"])
df['index'] = df.index
columns_titles = ["index", "body_text"]
df=df.reindex(columns=columns_titles)
col = ['index','body_text']
df = df[col]
df.columns = ['index','body_text']
model = load('model.pkl')
def count_punct(text):
count = sum([1 for char in text if char in string.punctuation])
return round(count/(len(text) - text.count(" ")), 3)*100
df['body_len'] = df['body_text'].apply(lambda x: len(x) - x.count(" "))
df['punct%'] = df['body_text'].apply(lambda x: count_punct(x))
#es = ft.EntitySet(id="text_data")
#es = es.entity_from_dataframe(entity_id="data",
# index='index',
# dataframe=df)
#from nlp_primitives import (
# DiversityScore,
# LSA,
# MeanCharactersPerWord,
# TitleWordCount,
# UpperCaseCount)
#trans = [DiversityScore,
# MeanCharactersPerWord,
# TitleWordCount,
# LSA,
# UpperCaseCount]
#feature_matrix, feature_defs = ft.dfs(entityset=es,
# target_entity='data',
# verbose=True,
# trans_primitives=trans,
# max_depth=4)
#feature_matrix.drop(["body_len"], axis=1, inplace=True)
#feature_matrix.drop(["punct%"], axis=1, inplace=True)
# Vectorizing data
#def clean_text(text):
# text = "".join([word.lower() for word in text if word not in string.punctuation])
# tokens = re.split('\W+', text)
# text = [word for word in tokens]
# return text
transformer = TfidfTransformer()
loaded_vec = CountVectorizer(decode_error="replace",vocabulary=load('vocabulary.pkl'))
transformed = transformer.fit_transform(loaded_vec.fit_transform(df.body_text).toarray())
features = pd.concat([df[['body_len', 'punct%']].reset_index(drop=True),
pd.DataFrame(transformed.toarray()).reset_index(drop=True)], axis=1)
#dataset = pd.concat([features,feature_matrix.reset_index(drop=True)], axis=1, sort=False)
pred = model.predict(features)
labels = list(map(id_to_labels.get, pred))
df['label'] = labels
del df['body_len']
del df['punct%']
df.to_csv('result.csv', encoding='utf-8')

View File

@ -4,4 +4,4 @@ from prototype.filehandler.models import Document
class DocumentForm(forms.ModelForm):
class Meta:
model = Document
fields = ('description', 'file', )
fields = ('file', )

Binary file not shown.

View File

@ -2,6 +2,5 @@ from __future__ import unicode_literals
from django.db import models
class Document(models.Model):
description = models.CharField(max_length=255, blank=True)
file = models.FileField(upload_to='documents/')
uploaded_at = models.DateTimeField(auto_now_add=True)

View File

@ -7,7 +7,6 @@ from django.http import JsonResponse, HttpResponse
from prototype.filehandler.models import Document
from prototype.filehandler.forms import DocumentForm
from prototype.filehandler.functions import isValidXML
from prototype.filehandler.xmlParser import parseData
def home(request):
@ -17,16 +16,15 @@ def home(request):
@csrf_exempt
def model_form_upload(request):
if request.method == 'POST':
if not isValidXML(request.FILES['file']):
return HttpResponse('Niepoprawny format XML', status=406)
form = DocumentForm(request.POST, request.FILES)
print("POST: " + str(request.POST))
print("FILES: " + str(request.FILES))
if form.is_valid():
form.save()
try:
data = parseData(request.FILES['file'])
print(data)
form.save()
return JsonResponse(data, safe=False)
except:
return HttpResponse('Niepoprawny format XML', status=406)
else:
form = DocumentForm()
return render(request, 'core/model_form_upload.html', {

Binary file not shown.

View File

@ -2,7 +2,11 @@
import argparse
from bs4 import BeautifulSoup
from postmarkup import render_bbcode
import json
import html
import re
import tempfile
def parseData(file):
# arguments
@ -11,12 +15,14 @@ def parseData(file):
args = parser.parse_args()
# write file first
with open('temp.xml', 'wb+') as destination:
fd = tempfile.NamedTemporaryFile()
f = open(fd.name, "wb+")
for chunk in file.chunks():
destination.write(chunk)
f.write(chunk)
f.close()
# make a soup:
with open('temp.xml') as forum:
with open(fd.name) as forum:
soup = BeautifulSoup(forum, "xml")
# put json together
@ -25,17 +31,21 @@ def parseData(file):
out['name'] = soup.forum.find('name').text
out['discussions'] = []
for d in soup.forum.find_all('discussion'):
posts = []
for p in d.find_all('post'):
post_soup = BeautifulSoup(html.unescape(str(p.message)), "lxml")
paragraphs = [render_bbcode(x.text) for x in post_soup.find_all('p')]
posts.append({
'id': p.get('id'),
'parent': p.find('parent').text,
'author': p.userid.text,
'message': [x for x in paragraphs if x]
})
out['discussions'].append({
'id': d.get('id'),
'title': d.find('name').text,
'first_post': d.firstpost.text,
'posts': [
{
'id': p.get('id'),
'parent': p.find('parent').text,
'author': p.userid.text,
'message': p.message.get_text()
} for p in d.find_all('post')]
'posts': posts
})
fd.close()
return(out)

Binary file not shown.

View File

@ -2,6 +2,8 @@
import argparse
from bs4 import BeautifulSoup
from postmarkup import render_bbcode
import html
import json
@ -22,12 +24,13 @@ out['discussions'] = []
for d in soup.forum.find_all('discussion'):
posts = []
for p in d.find_all('post'):
message_soup = BeautifulSoup(p.message.get_text(), "xml")
post_soup = BeautifulSoup(html.unescape(str(p.message)), "lxml")
paragraphs = [render_bbcode(x.text) for x in post_soup.find_all('p')]
posts.append({
'id': p.get('id'),
'parent': p.find('parent').text,
'author': p.userid.text,
'message': message_soup.get_text()
'message': [x for x in paragraphs if x]
})
out['discussions'].append({
'id': d.get('id'),