challenging-america-word-ga.../run.py

279 lines
10 KiB
Python
Raw Normal View History

2022-04-23 21:36:38 +02:00
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "1da94494-ccbd-4f3c-9ca0-2241cfd9d361",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 2,
"id": "2f51e23a-93a0-4bf6-9c87-19da220e11bd",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Collecting english_words\n",
" Downloading english-words-1.1.0.tar.gz (1.1 MB)\n",
"\u001b[K |████████████████████████████████| 1.1 MB 1.5 MB/s eta 0:00:01\n",
"\u001b[?25hBuilding wheels for collected packages: english-words\n",
" Building wheel for english-words (setup.py) ... \u001b[?25ldone\n",
"\u001b[?25h Created wheel for english-words: filename=english_words-1.1.0-py3-none-any.whl size=1106680 sha256=ddaf5f4288a2022c2ce712aad0ba022e7b25d4d7e73c5637d6154abc5a899662\n",
" Stored in directory: /home/asadursk/.cache/pip/wheels/0e/24/52/b4989db82a438482aa65b3c6c0537e988fd40546b792747b1a\n",
"Successfully built english-words\n",
"Installing collected packages: english-words\n",
"Successfully installed english-words-1.1.0\n"
]
}
],
"source": [
"!pip install english_words"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "d99975a7-aebe-4e26-b330-4be7f32204c5",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Collecting pypi-kenlm\n",
" Downloading pypi-kenlm-0.1.20210121.tar.gz (253 kB)\n",
"\u001b[K |████████████████████████████████| 253 kB 1.6 MB/s eta 0:00:01\n",
"\u001b[?25hBuilding wheels for collected packages: pypi-kenlm\n",
" Building wheel for pypi-kenlm (setup.py) ... \u001b[?25ldone\n",
"\u001b[?25h Created wheel for pypi-kenlm: filename=pypi_kenlm-0.1.20210121-cp39-cp39-linux_x86_64.whl size=311921 sha256=2fcde1a0b569c5d5aef6c61014559b38efc45ed4ae90357c1219816d9a5bbe9b\n",
" Stored in directory: /home/asadursk/.cache/pip/wheels/14/f0/7a/97db71356d1dc1b0c14bf48e0d01e5561d5d67ba869e4406d0\n",
"Successfully built pypi-kenlm\n",
"Installing collected packages: pypi-kenlm\n",
"Successfully installed pypi-kenlm-0.1.20210121\n"
]
}
],
"source": [
"!python -m pip install pypi-kenlm"
]
},
{
"cell_type": "code",
"execution_count": 27,
"id": "84560801-85f1-409b-a9c8-c209928276cc",
"metadata": {},
"outputs": [],
"source": [
"from collections import defaultdict, Counter\n",
"from nltk import trigrams, word_tokenize\n",
"from english_words import english_words_alpha_set\n",
"import csv\n",
"import regex as re\n",
"import pandas as pd\n",
"import kenlm\n",
"from math import log10"
]
},
{
"cell_type": "code",
"execution_count": 29,
"id": "7a39272c-7929-42d8-98ba-8304570439af",
"metadata": {},
"outputs": [],
"source": [
"def preprocess(row):\n",
" return re.sub(r'\\p{P}', '', row.lower().replace('-\\\\\\\\n', '').replace('\\\\\\\\n', ' '))"
]
},
{
"cell_type": "code",
"execution_count": 30,
"id": "2a330ad2-9b88-4fdd-bc04-635b5cb42c0d",
"metadata": {},
"outputs": [],
"source": [
"def kenlm_model():\n",
" with open(\"train_file.txt\", \"w+\") as f:\n",
" for text in X_train:\n",
" f.write(str(text) + \"\\n\")\n",
"\n",
" #%%\n",
" KENLM_BUILD_PATH='/home/asadursk/kenlm/build'\n",
" !$KENLM_BUILD_PATH/bin/lmplz -o 4 < train_file.txt > model.arpa\n",
" !$KENLM_BUILD_PATH/bin/build_binary model.arpa model.binary\n",
" !rm train_file.txt\n",
" \n",
" model = kenlm.Model(\"model.binary\")\n",
" return model"
]
},
{
"cell_type": "code",
"execution_count": 31,
"id": "e848ba36-f4eb-4bd6-9b19-fffea177bfa1",
"metadata": {},
"outputs": [],
"source": [
"def predict_word(w1, w3):\n",
" best_scores = []\n",
" for word in english_words_alpha_set:\n",
" text = ' '.join([w1, word, w3])\n",
" text_score = model.score(text, bos=False, eos=False)\n",
" if len(best_scores) < 12:\n",
" best_scores.append((word, text_score))\n",
" else:\n",
" is_better = False\n",
" worst_score = None\n",
" for score in best_scores:\n",
" if not worst_score:\n",
" worst_score = score\n",
" else:\n",
" if worst_score[1] > score[1]:\n",
" worst_score = score\n",
" if worst_score[1] < text_score:\n",
" best_scores.remove(worst_score)\n",
" best_scores.append((word, text_score))\n",
" probs = sorted(best_scores, key=lambda tup: tup[1], reverse=True)\n",
" pred_str = ''\n",
" for word, prob in probs:\n",
" pred_str += f'{word}:{prob} '\n",
" pred_str += f':{log10(0.99)}'\n",
" return pred_str"
]
},
{
"cell_type": "code",
"execution_count": 32,
"id": "6babeba5-af91-4e9c-a235-781525594f45",
"metadata": {},
"outputs": [],
"source": [
"def word_gap_prediction(file, model):\n",
" X_test = pd.read_csv(f'{file}/in.tsv.xz', sep='\\t', header=None, quoting=csv.QUOTE_NONE, on_bad_lines=\"skip\")\n",
" with open(f'{file}/out.tsv', 'w', encoding='utf-8') as output_file:\n",
" for _, row in X_test.iterrows():\n",
" before, after = word_tokenize(preprocess(str(row[6]))), word_tokenize(preprocess(str(row[7])))\n",
" if len(before) < 2 or len(after) < 2:\n",
" output = 'to:0.015 be:0.015 the:0.015 not:0.01 and:0.02 a:0.02 :0.9'\n",
" else:\n",
" output = predict_word(before[-1], after[0])\n",
" output_file.write(output + '\\n')"
]
},
{
"cell_type": "code",
"execution_count": 33,
"id": "8df4a04c-ae0d-46d7-8b76-1bcf6b424d7a",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"=== 1/5 Counting and sorting n-grams ===\n",
"Reading /home/asadursk/challenging-america-word-gap-prediction-kenlm/train_file.txt\n",
"----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100\n",
"****************************************************************************************************\n",
"Unigram tokens 2787545 types 548500\n",
"=== 2/5 Calculating and sorting adjusted counts ===\n",
"Chain sizes: 1:6582000 2:865198656 3:1622247552 4:2595596032\n",
"Statistics:\n",
"1 548500 D1=0.85065 D2=1.01013 D3+=1.14959\n",
"2 1743634 D1=0.900957 D2=1.09827 D3+=1.20014\n",
"3 2511917 D1=0.957313 D2=1.22283 D3+=1.33724\n",
"4 2719775 D1=0.982576 D2=1.4205 D3+=1.65074\n",
"Memory estimate for binary LM:\n",
"type MB\n",
"probing 157 assuming -p 1.5\n",
"probing 184 assuming -r models -p 1.5\n",
"trie 82 without quantization\n",
"trie 51 assuming -q 8 -b 8 quantization \n",
"trie 74 assuming -a 22 array pointer compression\n",
"trie 43 assuming -a 22 -q 8 -b 8 array pointer compression and quantization\n",
"=== 3/5 Calculating and sorting initial probabilities ===\n",
"Chain sizes: 1:6582000 2:27898144 3:50238340 4:65274600\n",
"----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100\n",
"####################################################################################################\n",
"=== 4/5 Calculating and writing order-interpolated probabilities ===\n",
"Chain sizes: 1:6582000 2:27898144 3:50238340 4:65274600\n",
"----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100\n",
"####################################################################################################\n",
"=== 5/5 Writing ARPA model ===\n",
"----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100\n",
"****************************************************************************************************\n",
"Name:lmplz\tVmPeak:5126188 kB\tVmRSS:54384 kB\tRSSMax:1084112 kB\tuser:9.18382\tsys:2.72419\tCPU:11.9081\treal:9.09119\n",
"Reading model.arpa\n",
"----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100\n",
"****************************************************************************************************\n",
"SUCCESS\n"
]
}
],
"source": [
"X_train = pd.read_csv('train/in.tsv.xz', sep='\\t', header=None, quoting=csv.QUOTE_NONE, nrows=10000, on_bad_lines=\"skip\")\n",
"Y_train = pd.read_csv('train/expected.tsv', sep='\\t', header=None, quoting=csv.QUOTE_NONE, nrows=10000, on_bad_lines=\"skip\")\n",
"\n",
"X_train = X_train[[6, 7]]\n",
"X_train = pd.concat([X_train, Y_train], axis=1)\n",
"X_train = X_train[6] + X_train[0] + X_train[7]\n",
"\n",
"model = kenlm_model()"
]
},
{
"cell_type": "code",
"execution_count": 34,
"id": "5f9b4351-54b6-42de-8653-597b17c42766",
"metadata": {},
"outputs": [],
"source": [
"word_gap_prediction(\"dev-0/\", model)"
]
},
{
"cell_type": "code",
"execution_count": 35,
"id": "71076162-473b-40f2-93ab-0536a2172780",
"metadata": {},
"outputs": [],
"source": [
"word_gap_prediction(\"test-A/\", model)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2481727e-94b5-49a0-9c21-0e105af6ef5b",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.7"
}
},
"nbformat": 4,
"nbformat_minor": 5
}