From 020c748f998c20c4c28ee40b6b9845396fed8b29 Mon Sep 17 00:00:00 2001 From: alesad7 Date: Sun, 3 Apr 2022 22:23:38 +0200 Subject: [PATCH] 434780 --- run.py | 41 ++++++++++++++++++++++++++++------------- 1 file changed, 28 insertions(+), 13 deletions(-) diff --git a/run.py b/run.py index 4d9c614..1d18d04 100644 --- a/run.py +++ b/run.py @@ -1,13 +1,30 @@ from nltk import trigrams, word_tokenize -from collections import defaultdict, Counter import pandas as pd import csv import regex as re +from collections import Counter, defaultdict -def preprocess(text): - text = text.lower().replace('-\\n', '').replace('\\n', ' ') - return re.sub(r'\p{P}', '', text) +train_set = pd.read_csv( + 'train/in.tsv.xz', + sep='\t', + on_bad_lines='skip', + header=None, + uoting=csv.QUOTE_NONE, + nrows=20000) + + +train_labels = pd.read_csv( + 'train/expected.tsv', + sep='\t', + on_bad_lines='skip', + header=None, + quoting=csv.QUOTE_NONE, + nrows=20000) + + +def data_preprocessing(text): + return re.sub(r'\p{P}', '', text.lower().replace('-\\n', '').replace('\\n', ' ')) def predict(before, after): @@ -27,7 +44,7 @@ def make_prediction(file): data = pd.read_csv(f'{file}/in.tsv.xz', sep='\t', on_bad_lines='skip', header=None, quoting=csv.QUOTE_NONE) with open(f'{file}/out.tsv', 'w', encoding='utf-8') as file_out: for _, row in data.iterrows(): - before, after = word_tokenize(preprocess(str(row[6]))), word_tokenize(preprocess(str(row[7]))) + before, after = word_tokenize(data_preprocessing(str(row[6]))), word_tokenize(data_preprocessing(str(row[7]))) if len(before) < 3 or len(after) < 3: prediction = 'to:0.02 be:0.02 the:0.02 or:0.01 not:0.01 and:0.01 a:0.01 :0.9' else: @@ -35,19 +52,17 @@ def make_prediction(file): file_out.write(prediction + '\n') -train_data = pd.read_csv('train/in.tsv.xz', sep='\t', on_bad_lines='skip', header=None, quoting=csv.QUOTE_NONE, nrows=20000) -train_labels = pd.read_csv('train/expected.tsv', sep='\t', on_bad_lines='skip', header=None, quoting=csv.QUOTE_NONE, nrows=20000) -train_data = train_data[[6, 7]] -train_data = pd.concat([train_data, train_labels], axis=1) -train_data['line'] = train_data[6] + train_data[0] + train_data[7] +train_set = train_set[[6, 7]] +train_set = pd.concat([train_set, train_labels], axis=1) +train_set['line'] = train_set[6] + train_set[0] + train_set[7] trigram = defaultdict(lambda: defaultdict(lambda: 0)) -rows = train_data.iterrows() -rows_len = len(train_data) +rows = train_set.iterrows() +rows_len = len(train_set) for index, (_, row) in enumerate(rows): - text = preprocess(str(row['line'])) + text = data_preprocessing(str(row['line'])) words = word_tokenize(text) for word_1, word_2, word_3 in trigrams(words, pad_right=True, pad_left=True): if word_1 and word_2 and word_3: