Compare commits

..

2 Commits

Author SHA1 Message Date
alesad7
85b0c69124 wygladzanie 2022-04-23 17:42:28 +02:00
alesad7
bd5acac80d wygladzanie 2022-04-23 17:23:40 +02:00
3 changed files with 17997 additions and 17990 deletions

File diff suppressed because it is too large Load Diff

121
run.py
View File

@ -1,80 +1,87 @@
from collections import defaultdict, Counter
from nltk import trigrams, word_tokenize
import pandas as pd
import csv
import regex as re
from collections import Counter, defaultdict
import pandas as pd
train_set = pd.read_csv(
X_train = pd.read_csv(
'train/in.tsv.xz',
sep='\t',
on_bad_lines='skip',
header=None,
quoting=csv.QUOTE_NONE,
nrows=50000)
nrows=70000,
on_bad_lines='skip')
train_labels = pd.read_csv(
Y_train = pd.read_csv(
'train/expected.tsv',
sep='\t',
on_bad_lines='skip',
header=None,
quoting=csv.QUOTE_NONE,
nrows=50000)
nrows=70000,
on_bad_lines='skip')
X_train = X_train[[6, 7]]
X_train = pd.concat([X_train, Y_train], axis=1)
X_train['row'] = X_train[6] + X_train[0] + X_train[7]
def data_preprocessing(text):
return re.sub(r'\p{P}', '', text.lower().replace('-\\n', '').replace('\\n', ' '))
def preprocess(row):
return re.sub(r'\p{P}', '', row.lower().replace('-\\n', '').replace('\\n', ' '))
def predict(before, after):
prediction = dict(Counter(dict(trigram[before, after])).most_common(5))
result = ''
prob = 0.0
for key, value in prediction.items():
prob += value
result += f'{key}:{value} '
if prob == 0.0:
return 'to:0.015 be:0.015 the:0.015 not:0.01 and:0.02 a:0.02 :0.9'
result += f':{max(1 - prob, 0.01)}'
return result
def train(X_train, alpha):
model = defaultdict(lambda: defaultdict(lambda: 0))
vocabulary = set()
for _, (_, row) in enumerate(X_train.iterrows()):
text = preprocess(str(row['row']))
words = word_tokenize(text)
for w1, w2, w3 in trigrams(words, pad_right=True, pad_left=True):
if w1 and w2 and w3:
model[(w1, w3)][w2] += 1
vocabulary.add(w1)
vocabulary.add(w2)
vocabulary.add(w3)
for _, w13 in enumerate(model):
count = float(sum(model[w13].values()))
denominator = count + alpha * len(vocabulary)
for w2 in model[w13]:
nominator = model[w13][w2] + alpha
model[w13][w2] = nominator / denominator
return model
def make_prediction(file):
data = pd.read_csv(f'{file}/in.tsv.xz', sep='\t', on_bad_lines='skip', header=None, quoting=csv.QUOTE_NONE)
with open(f'{file}/out.tsv', 'w', encoding='utf-8') as file_out:
for _, row in data.iterrows():
before, after = word_tokenize(data_preprocessing(str(row[6]))), word_tokenize(data_preprocessing(str(row[7])))
if len(before) < 3 or len(after) < 3:
prediction = 'to:0.015 be:0.015 the:0.015 not:0.01 and:0.02 a:0.02 :0.9'
def predict_word(before, after, model):
output = ''
p = 0.0
Y_pred = dict(Counter(dict(model[before, after])).most_common(7))
for key, value in Y_pred.items():
p += value
output += f'{key}:{value} '
if p == 0.0:
output = 'the:0.04 be:0.04 to:0.04 and:0.02 not:0.02 or:0.02 a:0.02 :0.8'
return output
output += f':{max(1 - p, 0.01)}'
return output
def prediction(file, model):
X_test = pd.read_csv(f'{file}/in.tsv.xz', sep='\t', header=None, quoting=csv.QUOTE_NONE, on_bad_lines='skip')
with open(f'{file}/out.tsv', 'w', encoding='utf-8') as output_file:
for _, row in X_test.iterrows():
before, after = word_tokenize(preprocess(str(row[6]))), word_tokenize(preprocess(str(row[7])))
if len(before) < 2 or len(after) < 2:
output = 'the:0.04 be:0.04 to:0.04 and:0.02 not:0.02 or:0.02 a:0.02 :0.8'
else:
prediction = predict(before[-1], after[0])
file_out.write(prediction + '\n')
output = predict_word(before[-1], after[0], model)
output_file.write(output + '\n')
train_set = train_set[[6, 7]]
train_set = pd.concat([train_set, train_labels], axis=1)
train_set['line'] = train_set[6] + train_set[0] + train_set[7]
model = train(X_train, 0.0002)
trigram = defaultdict(lambda: defaultdict(lambda: 0))
rows = train_set.iterrows()
rows_len = len(train_set)
for index, (_, row) in enumerate(rows):
text = data_preprocessing(str(row['line']))
words = word_tokenize(text)
for word_1, word_2, word_3 in trigrams(words, pad_right=True, pad_left=True):
if word_1 and word_2 and word_3:
trigram[(word_1, word_3)][word_2] += 1
model_len = len(trigram)
for index, words_1_3 in enumerate(trigram):
count = sum(trigram[words_1_3].values())
for word_2 in trigram[words_1_3]:
trigram[words_1_3][word_2] += 0.25
trigram[words_1_3][word_2] /= float(count + 0.25 + len(word_2))
make_prediction('test-A')
make_prediction('dev-0')
prediction('dev-0', model)
prediction('test-A', model)

File diff suppressed because it is too large Load Diff