from collections import defaultdict, Counter from nltk import trigrams, word_tokenize import csv import regex as re import pandas as pd X_train = pd.read_csv( 'train/in.tsv.xz', sep='\t', header=None, quoting=csv.QUOTE_NONE, nrows=70000, on_bad_lines='skip') Y_train = pd.read_csv( 'train/expected.tsv', sep='\t', header=None, quoting=csv.QUOTE_NONE, nrows=70000, on_bad_lines='skip') X_train = X_train[[6, 7]] X_train = pd.concat([X_train, Y_train], axis=1) X_train['row'] = X_train[6] + X_train[0] + X_train[7] def preprocess(row): return re.sub(r'\p{P}', '', row.lower().replace('-\\n', '').replace('\\n', ' ')) def train(X_train, alpha): model = defaultdict(lambda: defaultdict(lambda: 0)) vocabulary = set() for _, (_, row) in enumerate(X_train.iterrows()): text = preprocess(str(row['row'])) words = word_tokenize(text) for w1, w2, w3 in trigrams(words, pad_right=True, pad_left=True): if w1 and w2 and w3: model[(w1, w3)][w2] += 1 vocabulary.add(w1) vocabulary.add(w2) vocabulary.add(w3) for _, w13 in enumerate(model): count = float(sum(model[w13].values())) denominator = count + alpha * len(vocabulary) for w2 in model[w13]: nominator = model[w13][w2] + alpha model[w13][w2] = nominator / denominator return model def predict_word(before, after, model): output = '' p = 0.0 Y_pred = dict(Counter(dict(model[before, after])).most_common(7)) for key, value in Y_pred.items(): p += value output += f'{key}:{value} ' if p == 0.0: output = 'the:0.04 be:0.04 to:0.04 and:0.02 not:0.02 or:0.02 a:0.02 :0.8' return output output += f':{max(1 - p, 0.01)}' return output def prediction(file, model): X_test = pd.read_csv(f'{file}/in.tsv.xz', sep='\t', header=None, quoting=csv.QUOTE_NONE, on_bad_lines='skip') with open(f'{file}/out.tsv', 'w', encoding='utf-8') as output_file: for _, row in X_test.iterrows(): before, after = word_tokenize(preprocess(str(row[6]))), word_tokenize(preprocess(str(row[7]))) if len(before) < 2 or len(after) < 2: output = 'the:0.04 be:0.04 to:0.04 and:0.02 not:0.02 or:0.02 a:0.02 :0.8' else: output = predict_word(before[-1], after[0], model) output_file.write(output + '\n') model = train(X_train, 0.0002) prediction('dev-0', model) prediction('test-A', model)