ium_434780/eval-tensorflow.py

29 lines
680 B
Python
Raw Normal View History

2021-05-16 20:10:28 +02:00
import pandas as pd
import numpy as np
from tensorflow import keras
from sklearn.metrics import accuracy_score, f1_score
import matplotlib.pyplot as plt
model = keras.models.load_model('trained_model')
test_df = pd.read_csv('test.csv')
test_x = test_df['reviews.text'].to_numpy()
test_y = test_df['reviews.doRecommend'].to_numpy()
# print(test_y.shape)
# print(test_x.shape)
predictions = model.predict(test_x)
predictions = [1 if p > 0.5 else 0 for p in predictions]
accuracy = accuracy_score(test_y, predictions)
f1 = f1_score(test_y, predictions)
file = open('evaluation.txt', 'w')
file.writelines(accuracy.__str__() + '\n')
file.writelines(f1.__str__())
file.close()