This commit is contained in:
parent
b5b9a795fc
commit
2841a76304
File diff suppressed because one or more lines are too long
28333
dataset-Amazon.csv
Normal file
28333
dataset-Amazon.csv
Normal file
File diff suppressed because one or more lines are too long
29
main.py
29
main.py
@ -1,9 +1,24 @@
|
||||
import string
|
||||
import pandas as pd
|
||||
from sklearn.model_selection import train_test_split
|
||||
import nltk
|
||||
nltk.download('stopwords')
|
||||
from nltk.corpus import stopwords
|
||||
|
||||
|
||||
def remove_punct(text):
|
||||
translator = str.maketrans("", "", string.punctuation)
|
||||
return text.translate(translator)
|
||||
|
||||
|
||||
stop = set(stopwords.words("english"))
|
||||
def remove_stopwords(text):
|
||||
filtered_words = [word.lower() for word in text.split() if word.lower() not in stop]
|
||||
return " ".join(filtered_words)
|
||||
|
||||
|
||||
def main():
|
||||
data = pd.read_csv('Amazon_Consumer_Reviews.csv', header=0, sep=',')
|
||||
data = pd.read_csv('dataset-Amazon.csv')
|
||||
|
||||
columns = ['reviews.date', 'reviews.numHelpful', 'reviews.rating', 'reviews.doRecommend']
|
||||
string_columns = ['name', 'categories', 'primaryCategories', 'manufacturer', 'reviews.title',
|
||||
@ -13,11 +28,15 @@ def main():
|
||||
|
||||
for c in string_columns:
|
||||
data[c] = data[c].str.lower()
|
||||
data[c] = data[c].map(remove_punct)
|
||||
data[c] = data[c].map(remove_stopwords)
|
||||
|
||||
# print("Empty rows summary:")
|
||||
# print(data.isnull().sum())
|
||||
# data["reviews.title"].fillna("No title", inplace = True)
|
||||
# print(data.isnull().sum())
|
||||
print("Empty rows summary:")
|
||||
print(data.isnull().sum())
|
||||
data.loc[(data["reviews.rating"] > 3), 'reviews.doRecommend'] = True
|
||||
data.loc[(data["reviews.rating"] <= 3), 'reviews.doRecommend'] = False
|
||||
data["reviews.doRecommend"] = data["reviews.doRecommend"].astype(int)
|
||||
print(data.isnull().sum())
|
||||
|
||||
data.to_csv('data.csv')
|
||||
|
||||
|
130
main2.py
130
main2.py
@ -1,107 +1,81 @@
|
||||
import re
|
||||
import string
|
||||
import pandas as pd
|
||||
from silence_tensorflow import silence_tensorflow
|
||||
from tensorflow import keras
|
||||
|
||||
silence_tensorflow()
|
||||
import tensorflow as tf
|
||||
from tensorflow.keras.preprocessing.text import Tokenizer
|
||||
from collections import Counter
|
||||
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
||||
from tensorflow.keras import layers
|
||||
from tensorflow.keras import losses
|
||||
from tensorflow.keras.layers.experimental.preprocessing import TextVectorization
|
||||
|
||||
|
||||
def vectorize_text(text, label):
|
||||
text = tf.expand_dims(text, -1)
|
||||
return vectorize_layer(text), label
|
||||
def counter_word(text_col):
|
||||
count = Counter()
|
||||
for text in text_col.values:
|
||||
for word in text.split():
|
||||
count[word] += 1
|
||||
return count
|
||||
|
||||
|
||||
def custom_standardization(input_data):
|
||||
lowercase = tf.strings.lower(input_data)
|
||||
stripped_html = tf.strings.regex_replace(lowercase, '<br />', ' ')
|
||||
return tf.strings.regex_replace(stripped_html, '[%s]' % re.escape(string.punctuation), '')
|
||||
df = pd.read_csv('data.csv')
|
||||
train_df = pd.read_csv('train.csv')
|
||||
val_df = pd.read_csv('dev.csv')
|
||||
test_df = pd.read_csv('test.csv')
|
||||
|
||||
|
||||
batch_size = 32
|
||||
seed = 42
|
||||
df.dropna(subset = ['reviews.text'], inplace = True)
|
||||
train_df.dropna(subset = ['reviews.text'], inplace = True)
|
||||
val_df.dropna(subset = ['reviews.text'], inplace = True)
|
||||
test_df.dropna(subset = ['reviews.text'], inplace = True)
|
||||
|
||||
raw_train_ds = tf.keras.preprocessing.text_dataset_from_directory(
|
||||
'aclImdb/train',
|
||||
batch_size=batch_size,
|
||||
validation_split=0.2,
|
||||
subset='training',
|
||||
seed=seed)
|
||||
|
||||
raw_val_ds = tf.keras.preprocessing.text_dataset_from_directory(
|
||||
'aclImdb/train',
|
||||
batch_size=batch_size,
|
||||
validation_split=0.2,
|
||||
subset='validation',
|
||||
seed=seed)
|
||||
train_sentences = train_df['reviews.text'].to_numpy()
|
||||
train_labels = train_df['reviews.doRecommend'].to_numpy()
|
||||
val_sentences = val_df['reviews.text'].to_numpy()
|
||||
val_labels = val_df['reviews.doRecommend'].to_numpy()
|
||||
test_sentences = test_df['reviews.text'].to_numpy()
|
||||
test_labels = test_df['reviews.doRecommend'].to_numpy()
|
||||
|
||||
raw_test_ds = tf.keras.preprocessing.text_dataset_from_directory(
|
||||
'aclImdb/test',
|
||||
batch_size=batch_size)
|
||||
# print(train_labels.shape)
|
||||
# print(train_sentences.shape)
|
||||
|
||||
max_features = 10000
|
||||
sequence_length = 250
|
||||
counter = counter_word(df['reviews.text'])
|
||||
num_unique_words = len(counter)
|
||||
|
||||
vectorize_layer = TextVectorization(
|
||||
standardize=custom_standardization,
|
||||
max_tokens=max_features,
|
||||
output_mode='int',
|
||||
output_sequence_length=sequence_length)
|
||||
tokenizer = Tokenizer(num_words=num_unique_words)
|
||||
tokenizer.fit_on_texts(train_sentences)
|
||||
|
||||
train_text = raw_train_ds.map(lambda x, y: x)
|
||||
vectorize_layer.adapt(train_text)
|
||||
word_index = tokenizer.word_index
|
||||
|
||||
train_ds = raw_train_ds.map(vectorize_text)
|
||||
val_ds = raw_val_ds.map(vectorize_text)
|
||||
test_ds = raw_test_ds.map(vectorize_text)
|
||||
train_sequences = tokenizer.texts_to_sequences(train_sentences)
|
||||
val_sequences = tokenizer.texts_to_sequences(val_sentences)
|
||||
test_sequences = tokenizer.texts_to_sequences(test_sentences)
|
||||
|
||||
AUTOTUNE = tf.data.AUTOTUNE
|
||||
max_length = 30
|
||||
train_padded = pad_sequences(train_sequences, maxlen=max_length, padding="post", truncating="post")
|
||||
val_padded = pad_sequences(val_sequences, maxlen=max_length, padding="post", truncating="post")
|
||||
test_padded = pad_sequences(test_sequences, maxlen=max_length, padding="post", truncating="post")
|
||||
|
||||
train_ds = train_ds.cache().prefetch(buffer_size=AUTOTUNE)
|
||||
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)
|
||||
test_ds = test_ds.cache().prefetch(buffer_size=AUTOTUNE)
|
||||
|
||||
embedding_dim = 16
|
||||
|
||||
model = tf.keras.Sequential([
|
||||
layers.Embedding(max_features + 1, embedding_dim),
|
||||
layers.Dropout(0.2),
|
||||
layers.GlobalAveragePooling1D(),
|
||||
layers.Dropout(0.2),
|
||||
layers.Dense(1)])
|
||||
model = keras.models.Sequential()
|
||||
model.add(layers.Embedding(num_unique_words, 32, input_length=max_length))
|
||||
model.add(layers.LSTM(64, dropout=0.1))
|
||||
model.add(layers.Dense(1, activation="sigmoid"))
|
||||
|
||||
model.summary()
|
||||
|
||||
model.compile(loss=losses.BinaryCrossentropy(from_logits=True),
|
||||
optimizer='adam',
|
||||
metrics=tf.metrics.BinaryAccuracy(threshold=0.0))
|
||||
loss = keras.losses.BinaryCrossentropy(from_logits=False)
|
||||
optim = keras.optimizers.Adam(lr = 0.001)
|
||||
metrics = ["accuracy"]
|
||||
|
||||
epochs = 10
|
||||
history = model.fit(
|
||||
train_ds,
|
||||
validation_data=val_ds,
|
||||
epochs=epochs)
|
||||
model.compile(loss = loss, optimizer = optim, metrics = metrics)
|
||||
model.fit(train_padded, train_labels, epochs = 20, validation_data=(val_padded, val_labels), verbose=2)
|
||||
|
||||
loss, accuracy = model.evaluate(test_ds)
|
||||
print("Loss: ", loss)
|
||||
print("Accuracy: ", accuracy)
|
||||
predictions = model.predict(test_padded)
|
||||
|
||||
export_model = tf.keras.Sequential([
|
||||
vectorize_layer,
|
||||
model,
|
||||
layers.Activation('sigmoid')
|
||||
])
|
||||
|
||||
export_model.compile(
|
||||
loss=losses.BinaryCrossentropy(from_logits=False), optimizer="adam", metrics=['accuracy']
|
||||
)
|
||||
|
||||
loss, accuracy = export_model.evaluate(raw_test_ds)
|
||||
print("Loss: ", loss)
|
||||
print("Accuracy: ", accuracy)
|
||||
predictions = [1 if p > 0.5 else 0 for p in predictions]
|
||||
|
||||
file = open('results.txt', 'w')
|
||||
file.write('test loss: ' + loss + '\n' + 'test accuracy: ' + accuracy)
|
||||
file.write(predictions.__str__())
|
||||
file.close()
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user