import pandas as pd import numpy as np from tensorflow import keras from sklearn.metrics import accuracy_score, f1_score import matplotlib.pyplot as plt model = keras.models.load_model('trained_model') test_df = pd.read_csv('test.csv') test_x = test_df['reviews.text'].to_numpy() test_y = test_df['reviews.doRecommend'].to_numpy() # print(test_y.shape) # print(test_x.shape) predictions = model.predict(test_x) predictions = [1 if p > 0.5 else 0 for p in predictions] accuracy = accuracy_score(test_y, predictions) f1 = f1_score(test_y, predictions) file = open('evaluation.txt', 'a') file.writelines(accuracy.__str__() + '\n') file.close() with open('evaluation.txt', 'r') as f: lines = f.readlines() fig = plt.figure(figsize=(10, 5)) chart = fig.add_subplot() chart.set_title("Accuracy") chart.set_ylabel("Accuracy value") chart.set_xlabel("Build number") x = np.arange(0, len(lines), 1) y = [float(x) for x in lines] plt.plot(x, y) plt.savefig("evaluation-chart.png")