import pandas as pd import numpy as np from tensorflow import keras from sklearn.metrics import accuracy_score, f1_score import matplotlib.pyplot as plt model = keras.models.load_model('trained_model') test_df = pd.read_csv('test.csv') test_x = test_df['reviews.text'].to_numpy() test_y = test_df['reviews.doRecommend'].to_numpy() # print(test_y.shape) # print(test_x.shape) predictions = model.predict(test_x) predictions = [1 if p > 0.5 else 0 for p in predictions] accuracy = accuracy_score(test_y, predictions) f1 = f1_score(test_y, predictions) file = open('evaluation.txt', 'w') file.writelines(accuracy.__str__() + '\n') file.writelines(f1.__str__()) file.close()