161 lines
6.6 KiB
Python
161 lines
6.6 KiB
Python
import numpy as np
|
|
import skfuzzy as fuzz
|
|
import matplotlib.pyplot as plt
|
|
|
|
# Generate universe variables
|
|
# * Quality and service on subjective ranges [0, 10]
|
|
# * Tip has a range of [0, 25] in units of percentage points
|
|
goals = np.arange(0, 35, 1)
|
|
xGPerMatch = np.arange(0, 1, 0.01)
|
|
shotsPerMatch=np.arange(0, 5, 0.01)
|
|
onTargetPerMatch = np.arange(0, 5, 0.01)
|
|
ocena=np.arange(0, 101, 1)
|
|
|
|
# Generate fuzzy membership functions
|
|
goals_low = fuzz.trapmf(goals, [0, 0, 10,15])
|
|
goals_md = fuzz.trimf(goals, [10, 15, 20])
|
|
goals_hi = fuzz.trapmf(goals, [15, 20, 35, 100])
|
|
xGPerMatch_lo = fuzz.trapmf(xGPerMatch, [0,0, 0.2, 0.5])
|
|
xGPerMatch_md = fuzz.trimf(xGPerMatch, [0.2, 0.5, 0.7])
|
|
xGPerMatch_hi = fuzz.trapmf(xGPerMatch, [0.5, 0.7, 2, 10])
|
|
shotsPerMatch_lo = fuzz.trapmf(shotsPerMatch, [0,0, 1, 2])
|
|
shotsPerMatch_md = fuzz.trapmf(shotsPerMatch, [1, 2, 3, 4])
|
|
shotsPerMatch_hi = fuzz.trapmf(shotsPerMatch, [3, 4, 4.5, 10])
|
|
onTargetPerMatch_lo = fuzz.trapmf(onTargetPerMatch, [0, 0, 0.5, 1])
|
|
onTargetPerMatch_md = fuzz.trimf(onTargetPerMatch, [0.5, 1, 1.5])
|
|
onTargetPerMatch_hi = fuzz.trimf(onTargetPerMatch, [1, 1.5, 5])
|
|
ocena_lo = fuzz.trapmf(ocena, [0, 0, 40,50])
|
|
ocena_md = fuzz.trapmf(ocena, [40, 50, 60, 80])
|
|
ocena_hi = fuzz.trapmf(ocena, [70, 80, 100, 100])
|
|
|
|
|
|
# Visualize these universes and membership functions
|
|
fig, (ax0, ax1, ax2, ax3, ax4) = plt.subplots(nrows=5, figsize=(8, 9))
|
|
|
|
ax0.plot(goals, goals_low, 'b', linewidth=1.5, label='Mało')
|
|
ax0.plot(goals, goals_md, 'g', linewidth=1.5, label='Średnio')
|
|
ax0.plot(goals, goals_hi, 'r', linewidth=1.5, label='Dużo')
|
|
ax0.set_title('Liczba bramek')
|
|
ax0.legend()
|
|
|
|
ax1.plot(xGPerMatch, xGPerMatch_lo, 'b', linewidth=1.5, label='Mało')
|
|
ax1.plot(xGPerMatch, xGPerMatch_md, 'g', linewidth=1.5, label='Średno')
|
|
ax1.plot(xGPerMatch, xGPerMatch_hi, 'r', linewidth=1.5, label='Dużo')
|
|
ax1.set_title('Service quality')
|
|
ax1.legend()
|
|
|
|
ax2.plot(shotsPerMatch, shotsPerMatch_lo, 'b', linewidth=1.5, label='Mało')
|
|
ax2.plot(shotsPerMatch, shotsPerMatch_md, 'g', linewidth=1.5, label='Średnio')
|
|
ax2.plot(shotsPerMatch, shotsPerMatch_hi, 'r', linewidth=1.5, label='Dużo')
|
|
ax2.set_title('Strzały na mecz')
|
|
ax2.legend()
|
|
|
|
ax3.plot(onTargetPerMatch, onTargetPerMatch_lo, 'b', linewidth=1.5, label='Mało')
|
|
ax3.plot(onTargetPerMatch, onTargetPerMatch_md, 'g', linewidth=1.5, label='Średnio')
|
|
ax3.plot(onTargetPerMatch, onTargetPerMatch_hi, 'r', linewidth=1.5, label='Dużo')
|
|
ax3.set_title('Strzały w światlo bramki na mecz')
|
|
ax3.legend()
|
|
|
|
ax4.plot(ocena, ocena_lo, 'b', linewidth=1.5, label='Niska')
|
|
ax4.plot(ocena, ocena_md, 'g', linewidth=1.5, label='Średnia')
|
|
ax4.plot(ocena, ocena_hi, 'r', linewidth=1.5, label='Wysoka')
|
|
ax4.set_title('Ocena')
|
|
ax4.legend()
|
|
|
|
# Turn off top/right axes
|
|
for ax in (ax0, ax1, ax2, ax3, ax4):
|
|
ax.spines['top'].set_visible(False)
|
|
ax.spines['right'].set_visible(False)
|
|
ax.get_xaxis().tick_bottom()
|
|
ax.get_yaxis().tick_left()
|
|
|
|
plt.tight_layout()
|
|
plt.show()
|
|
|
|
goals_value=22
|
|
xGPerMatch_value=0.9
|
|
shotsPerMatch_value=4.43
|
|
onTargetPerMatch_value=1.57
|
|
|
|
goals_level_lo = fuzz.interp_membership(goals, goals_low, goals_value)
|
|
goals_level_md = fuzz.interp_membership(goals, goals_md, goals_value)
|
|
goals_level_hi = fuzz.interp_membership(goals, goals_hi, goals_value)
|
|
|
|
xGPerMatch_level_lo = fuzz.interp_membership(xGPerMatch, xGPerMatch_lo, xGPerMatch_value)
|
|
xGPerMatch_level_md = fuzz.interp_membership(xGPerMatch, xGPerMatch_md, xGPerMatch_value)
|
|
xGPerMatch_level_hi = fuzz.interp_membership(xGPerMatch, xGPerMatch_hi, xGPerMatch_value)
|
|
|
|
shotsPerMatch_level_lo = fuzz.interp_membership(shotsPerMatch, shotsPerMatch_lo, shotsPerMatch_value)
|
|
shotsPerMatch_level_md = fuzz.interp_membership(shotsPerMatch, shotsPerMatch_md, shotsPerMatch_value)
|
|
shotsPerMatch_level_hi = fuzz.interp_membership(shotsPerMatch, shotsPerMatch_hi, shotsPerMatch_value)
|
|
|
|
onTargetPerMatch_level_lo = fuzz.interp_membership(onTargetPerMatch, onTargetPerMatch_lo, onTargetPerMatch_value)
|
|
onTargetPerMatch_level_md = fuzz.interp_membership(onTargetPerMatch, onTargetPerMatch_md, onTargetPerMatch_value)
|
|
onTargetPerMatch_level_hi = fuzz.interp_membership(onTargetPerMatch, onTargetPerMatch_hi, onTargetPerMatch_value)
|
|
|
|
# Now we take our rules and apply them. Rule 1 concerns bad food OR service.
|
|
# The OR operator means we take the maximum of these two.
|
|
active_rule1 = np.fmax(goals_level_hi, xGPerMatch_level_hi)
|
|
active_rule2=np.fmax(active_rule1, onTargetPerMatch_level_hi)
|
|
|
|
# Now we apply this by clipping the top off the corresponding output
|
|
# membership function with `np.fmin`
|
|
ocena_activation_hi = np.fmin(active_rule2, ocena_hi) # removed entirely to 0
|
|
|
|
# For rule 2 we connect acceptable service to medium tipping
|
|
active_rule3=np.fmax(np.fmin(goals_level_lo,xGPerMatch_level_hi),np.fmin(goals_level_lo, shotsPerMatch_level_hi))
|
|
ocena_activation_md = np.fmin(active_rule2, ocena_md)
|
|
|
|
# For rule 3 we connect high service OR high food with high tipping
|
|
ocena_activation_lo = np.fmin(goals_level_lo, ocena_lo)
|
|
ocena0 = np.zeros_like(ocena)
|
|
|
|
# Visualize this
|
|
fig, ax0 = plt.subplots(figsize=(8, 3))
|
|
|
|
ax0.fill_between(ocena, ocena0, ocena_activation_lo, facecolor='b', alpha=0.7)
|
|
ax0.plot(ocena, ocena_lo, 'b', linewidth=0.5, linestyle='--', )
|
|
ax0.fill_between(ocena, ocena0, ocena_activation_md, facecolor='g', alpha=0.7)
|
|
ax0.plot(ocena, ocena_md, 'g', linewidth=0.5, linestyle='--')
|
|
ax0.fill_between(ocena, ocena0, ocena_activation_hi, facecolor='r', alpha=0.7)
|
|
ax0.plot(ocena, ocena_hi, 'r', linewidth=0.5, linestyle='--')
|
|
ax0.set_title('Output membership activity')
|
|
|
|
# Turn off top/right axes
|
|
for ax in (ax0,):
|
|
ax.spines['top'].set_visible(False)
|
|
ax.spines['right'].set_visible(False)
|
|
ax.get_xaxis().tick_bottom()
|
|
ax.get_yaxis().tick_left()
|
|
|
|
plt.tight_layout()
|
|
plt.show()
|
|
|
|
aggregated = np.fmax(ocena_activation_lo,
|
|
np.fmax(ocena_activation_md, ocena_activation_hi))
|
|
|
|
# Calculate defuzzified result
|
|
ocena_output = fuzz.defuzz(ocena, aggregated, 'centroid')
|
|
ocena_activation = fuzz.interp_membership(ocena, aggregated, ocena_output) # for plot
|
|
|
|
# Visualize this
|
|
fig, ax0 = plt.subplots(figsize=(8, 3))
|
|
|
|
ax0.plot(ocena, ocena_lo, 'b', linewidth=0.5, linestyle='--', )
|
|
ax0.plot(ocena, ocena_md, 'g', linewidth=0.5, linestyle='--')
|
|
ax0.plot(ocena, ocena_hi, 'r', linewidth=0.5, linestyle='--')
|
|
ax0.fill_between(ocena, ocena0, aggregated, facecolor='Orange', alpha=0.7)
|
|
ax0.plot([ocena_output, ocena_output], [0, ocena_activation], 'k', linewidth=1.5, alpha=0.9)
|
|
ax0.set_title('Aggregated membership and result (line)')
|
|
|
|
# Turn off top/right axes
|
|
for ax in (ax0,):
|
|
ax.spines['top'].set_visible(False)
|
|
ax.spines['right'].set_visible(False)
|
|
ax.get_xaxis().tick_bottom()
|
|
ax.get_yaxis().tick_left()
|
|
|
|
plt.tight_layout()
|
|
plt.show()
|
|
|
|
print(ocena_output) |