s434784
This commit is contained in:
parent
96f3dafd86
commit
9d519941b0
271
.ipynb_checkpoints/run-checkpoint.ipynb
Normal file
271
.ipynb_checkpoints/run-checkpoint.ipynb
Normal file
@ -0,0 +1,271 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from nltk import trigrams, word_tokenize\n",
|
||||
"import pandas as pd\n",
|
||||
"import csv\n",
|
||||
"import regex as re\n",
|
||||
"from collections import Counter, defaultdict\n",
|
||||
"import kenlm\n",
|
||||
"from english_words import english_words_alpha_set\n",
|
||||
"from math import log10"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"train_set = pd.read_csv(\n",
|
||||
" 'train/in.tsv.xz',\n",
|
||||
" sep='\\t',\n",
|
||||
" header=None,\n",
|
||||
" quoting=csv.QUOTE_NONE,\n",
|
||||
" nrows=35000)\n",
|
||||
"\n",
|
||||
"train_labels = pd.read_csv(\n",
|
||||
" 'train/expected.tsv',\n",
|
||||
" sep='\\t',\n",
|
||||
" header=None,\n",
|
||||
" quoting=csv.QUOTE_NONE,\n",
|
||||
" nrows=35000)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"data = pd.concat([train_set, train_labels], axis=1)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"data = train_set[6] + train_set[0] + train_set[7]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def data_preprocessing(text):\n",
|
||||
" return re.sub(r'\\p{P}', '', text.lower().replace('-\\\\n', '').replace('\\\\n', ' ').replace(\"'ll\", \" will\").replace(\"-\", \"\").replace(\"'ve\", \" have\").replace(\"'s\", \" is\"))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"data = data.apply(data_preprocessing)\n",
|
||||
"prediction = 'the:0.03 be:0.03 to:0.03 of:0.025 and:0.025 a:0.025 in:0.020 that:0.020 have:0.015 I:0.010 it:0.010 for:0.010 not:0.010 on:0.010 with:0.010 he:0.010 as:0.010 you:0.010 do:0.010 at:0.010 :0.77'"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 25,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"with open(\"train_file.txt\", \"w+\") as f:\n",
|
||||
" for text in data:\n",
|
||||
" f.write(text + \"\\n\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 27,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"KENLM_BUILD_PATH='../kenlm/build/bin/lmplz'"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 28,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"=== 1/5 Counting and sorting n-grams ===\n",
|
||||
"Reading /home/maciej/challenging-america-word-gap-prediction/train_file.txt\n",
|
||||
"----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100\n",
|
||||
"****************************************************************************************************\n",
|
||||
"Unigram tokens 11040226 types 580506\n",
|
||||
"=== 2/5 Calculating and sorting adjusted counts ===\n",
|
||||
"Chain sizes: 1:6966072 2:4100520192 3:7688475136 4:12301560832\n",
|
||||
"Statistics:\n",
|
||||
"1 580506 D1=0.841976 D2=0.938008 D3+=1.10537\n",
|
||||
"2 3583875 D1=0.83057 D2=1.0296 D3+=1.2275\n",
|
||||
"3 7705610 D1=0.899462 D2=1.16366 D3+=1.32181\n",
|
||||
"4 9865473 D1=0.942374 D2=1.27613 D3+=1.35073\n",
|
||||
"Memory estimate for binary LM:\n",
|
||||
"type MB\n",
|
||||
"probing 442 assuming -p 1.5\n",
|
||||
"probing 508 assuming -r models -p 1.5\n",
|
||||
"trie 216 without quantization\n",
|
||||
"trie 126 assuming -q 8 -b 8 quantization \n",
|
||||
"trie 195 assuming -a 22 array pointer compression\n",
|
||||
"trie 104 assuming -a 22 -q 8 -b 8 array pointer compression and quantization\n",
|
||||
"=== 3/5 Calculating and sorting initial probabilities ===\n",
|
||||
"Chain sizes: 1:6966072 2:57342000 3:154112200 4:236771352\n",
|
||||
"----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100\n",
|
||||
"####################################################################################################\n",
|
||||
"=== 4/5 Calculating and writing order-interpolated probabilities ===\n",
|
||||
"Chain sizes: 1:6966072 2:57342000 3:154112200 4:236771352\n",
|
||||
"----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100\n",
|
||||
"####################################################################################################\n",
|
||||
"=== 5/5 Writing ARPA model ===\n",
|
||||
"----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100\n",
|
||||
"****************************************************************************************************\n",
|
||||
"Name:lmplz\tVmPeak:23697780 kB\tVmRSS:21496 kB\tRSSMax:4963084 kB\tuser:39.0693\tsys:17.6943\tCPU:56.7637\treal:43.821\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"!$KENLM_BUILD_PATH -o 4 < train_file.txt > kenlm_model.arpa"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 29,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"/home/maciej/challenging-america-word-gap-prediction\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Loading the LM will be faster if you build a binary file.\n",
|
||||
"Reading /home/maciej/challenging-america-word-gap-prediction/kenlm_model.arpa\n",
|
||||
"----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100\n",
|
||||
"****************************************************************************************************\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"print(os.getcwd())\n",
|
||||
"model = kenlm.Model('kenlm_model.arpa')\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 30,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def predict(before, after):\n",
|
||||
" result = ''\n",
|
||||
" prob = 0.0\n",
|
||||
" best = []\n",
|
||||
" for word in english_words_alpha_set:\n",
|
||||
" text = ' '.join([before, word, after])\n",
|
||||
" text_score = model.score(text, bos=False, eos=False)\n",
|
||||
" if len(best) < 12:\n",
|
||||
" best.append((word, text_score))\n",
|
||||
" else:\n",
|
||||
" is_better = False\n",
|
||||
" worst_score = None\n",
|
||||
" for score in best:\n",
|
||||
" if not worst_score:\n",
|
||||
" worst_score = score\n",
|
||||
" else:\n",
|
||||
" if worst_score[1] > score[1]:\n",
|
||||
" worst_score = score\n",
|
||||
" if worst_score[1] < text_score:\n",
|
||||
" best.remove(worst_score)\n",
|
||||
" best.append((word, text_score))\n",
|
||||
" probs = sorted(best, key=lambda tup: tup[1], reverse=True)\n",
|
||||
" pred_str = ''\n",
|
||||
" for word, prob in probs:\n",
|
||||
" pred_str += f'{word}:{prob} '\n",
|
||||
" pred_str += f':{log10(0.99)}'\n",
|
||||
" return pred_str\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 31,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def make_prediction(path, result_path):\n",
|
||||
" data = pd.read_csv(path, sep='\\t', header=None, quoting=csv.QUOTE_NONE)\n",
|
||||
" with open(result_path, 'w', encoding='utf-8') as file_out:\n",
|
||||
" for _, row in data.iterrows():\n",
|
||||
" before, after = word_tokenize(data_preprocessing(str(row[6]))), word_tokenize(data_preprocessing(str(row[7])))\n",
|
||||
" if len(before) < 2 or len(after) < 2:\n",
|
||||
" pred = prediction\n",
|
||||
" else:\n",
|
||||
" pred = predict(before[-1], after[0])\n",
|
||||
" file_out.write(pred + '\\n')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 32,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"make_prediction(\"dev-0/in.tsv.xz\", \"dev-0/out.tsv\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 33,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"make_prediction(\"test-A/in.tsv.xz\", \"test-A/out.tsv\")"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"interpreter": {
|
||||
"hash": "916dbcbb3f70747c44a77c7bcd40155683ae19c65e1c03b4aa3499c5328201f1"
|
||||
},
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.8.10"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
35000
train_file.txt
Normal file
35000
train_file.txt
Normal file
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user