bigram
This commit is contained in:
parent
9d519941b0
commit
b22b9c3534
232
run.py
Executable file → Normal file
232
run.py
Executable file → Normal file
@ -1,22 +1,68 @@
|
||||
#!/usr/bin/env python
|
||||
# coding: utf-8
|
||||
|
||||
# In[2]:
|
||||
|
||||
|
||||
from nltk import trigrams, word_tokenize
|
||||
import pandas as pd
|
||||
import csv
|
||||
from itertools import islice
|
||||
import regex as re
|
||||
from collections import Counter, defaultdict
|
||||
import kenlm
|
||||
from english_words import english_words_alpha_set
|
||||
from math import log10
|
||||
import sys
|
||||
from torchtext.vocab import build_vocab_from_iterator
|
||||
from torch import nn
|
||||
import torch
|
||||
from torch.utils.data import IterableDataset
|
||||
import itertools
|
||||
import pandas as pd
|
||||
from torch.utils.data import DataLoader
|
||||
import csv
|
||||
|
||||
def data_preprocessing(text):
|
||||
return re.sub(r'\p{P}', '', text.lower().replace('-\\n', '').replace('\\n', ' ').replace("'ll", " will").replace("-", "").replace("'ve", " have").replace("'s", " is"))
|
||||
|
||||
def get_words_from_line(line):
|
||||
line = line.rstrip()
|
||||
yield '<s>'
|
||||
for m in re.finditer(r'[\p{L}0-9\*]+|\p{P}+', line):
|
||||
yield m.group(0).lower()
|
||||
yield '</s>'
|
||||
|
||||
|
||||
# In[3]:
|
||||
def get_word_lines_from_file(data):
|
||||
for line in data:
|
||||
yield get_words_from_line(line)
|
||||
|
||||
|
||||
class SimpleBigramNeuralLanguageModel(nn.Module):
|
||||
def __init__(self, vocabulary_size, embedding_size):
|
||||
super(SimpleBigramNeuralLanguageModel, self).__init__()
|
||||
self.model = nn.Sequential(
|
||||
nn.Embedding(vocabulary_size, embedding_size),
|
||||
nn.Linear(embedding_size, vocabulary_size),
|
||||
nn.Softmax()
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
return self.model(x)
|
||||
|
||||
|
||||
def look_ahead_iterator(gen):
|
||||
prev = None
|
||||
for item in gen:
|
||||
if prev is not None:
|
||||
yield (prev, item)
|
||||
prev = item
|
||||
|
||||
class Bigrams(IterableDataset):
|
||||
def __init__(self, text_file, vocabulary_size):
|
||||
self.vocab = build_vocab_from_iterator(
|
||||
get_word_lines_from_file(text_file),
|
||||
max_tokens = vocabulary_size,
|
||||
specials = ['<unk>'])
|
||||
self.vocab.set_default_index(self.vocab['<unk>'])
|
||||
self.vocabulary_size = vocabulary_size
|
||||
self.text_file = text_file
|
||||
|
||||
def __iter__(self):
|
||||
return look_ahead_iterator(
|
||||
(self.vocab[t] for t in itertools.chain.from_iterable(get_word_lines_from_file(self.text_file))))
|
||||
|
||||
in_file = 'train/in.tsv.xz'
|
||||
out_file = 'train/expected.tsv'
|
||||
|
||||
train_set = pd.read_csv(
|
||||
'train/in.tsv.xz',
|
||||
sep='\t',
|
||||
@ -31,116 +77,72 @@ train_labels = pd.read_csv(
|
||||
quoting=csv.QUOTE_NONE,
|
||||
nrows=35000)
|
||||
|
||||
|
||||
# In[4]:
|
||||
|
||||
|
||||
data = pd.concat([train_set, train_labels], axis=1)
|
||||
|
||||
|
||||
# In[5]:
|
||||
|
||||
|
||||
data = train_set[6] + train_set[0] + train_set[7]
|
||||
|
||||
|
||||
# In[6]:
|
||||
|
||||
|
||||
def data_preprocessing(text):
|
||||
return re.sub(r'\p{P}', '', text.lower().replace('-\\n', '').replace('\\n', ' ').replace("'ll", " will").replace("-", "").replace("'ve", " have").replace("'s", " is"))
|
||||
|
||||
|
||||
# In[8]:
|
||||
|
||||
|
||||
data = data.apply(data_preprocessing)
|
||||
|
||||
vocab_size = 30000
|
||||
embed_size = 150
|
||||
|
||||
|
||||
bigram_data = Bigrams(data, vocab_size)
|
||||
|
||||
device = 'cpu'
|
||||
model = SimpleBigramNeuralLanguageModel(vocab_size, embed_size).to(device)
|
||||
data = DataLoader(bigram_data, batch_size=5000)
|
||||
optimizer = torch.optim.Adam(model.parameters())
|
||||
criterion = torch.nn.NLLLoss()
|
||||
|
||||
model.train()
|
||||
step = 0
|
||||
for x, y in data:
|
||||
x = x.to(device)
|
||||
y = y.to(device)
|
||||
optimizer.zero_grad()
|
||||
ypredicted = model(x)
|
||||
loss = criterion(torch.log(ypredicted), y)
|
||||
if step % 100 == 0:
|
||||
print(step, loss)
|
||||
step += 1
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
torch.save(model.state_dict(), 'model1.bin')
|
||||
|
||||
vocab = bigram_data.vocab
|
||||
prediction = 'the:0.03 be:0.03 to:0.03 of:0.025 and:0.025 a:0.025 in:0.020 that:0.020 have:0.015 I:0.010 it:0.010 for:0.010 not:0.010 on:0.010 with:0.010 he:0.010 as:0.010 you:0.010 do:0.010 at:0.010 :0.77'
|
||||
|
||||
|
||||
# In[25]:
|
||||
|
||||
|
||||
with open("train_file.txt", "w+") as f:
|
||||
for text in data:
|
||||
f.write(text + "\n")
|
||||
|
||||
|
||||
# In[27]:
|
||||
|
||||
|
||||
KENLM_BUILD_PATH='../kenlm/build/bin/lmplz'
|
||||
|
||||
|
||||
# In[28]:
|
||||
|
||||
|
||||
get_ipython().system('$KENLM_BUILD_PATH -o 4 < train_file.txt > kenlm_model.arpa')
|
||||
|
||||
|
||||
# In[29]:
|
||||
|
||||
|
||||
import os
|
||||
print(os.getcwd())
|
||||
model = kenlm.Model('kenlm_model.arpa')
|
||||
|
||||
|
||||
# In[30]:
|
||||
|
||||
|
||||
def predict(before, after):
|
||||
result = ''
|
||||
prob = 0.0
|
||||
best = []
|
||||
for word in english_words_alpha_set:
|
||||
text = ' '.join([before, word, after])
|
||||
text_score = model.score(text, bos=False, eos=False)
|
||||
if len(best) < 12:
|
||||
best.append((word, text_score))
|
||||
else:
|
||||
is_better = False
|
||||
worst_score = None
|
||||
for score in best:
|
||||
if not worst_score:
|
||||
worst_score = score
|
||||
else:
|
||||
if worst_score[1] > score[1]:
|
||||
worst_score = score
|
||||
if worst_score[1] < text_score:
|
||||
best.remove(worst_score)
|
||||
best.append((word, text_score))
|
||||
probs = sorted(best, key=lambda tup: tup[1], reverse=True)
|
||||
pred_str = ''
|
||||
for word, prob in probs:
|
||||
pred_str += f'{word}:{prob} '
|
||||
pred_str += f':{log10(0.99)}'
|
||||
def predict_word(w):
|
||||
ixs = torch.tensor(vocab.forward(w)).to(device)
|
||||
out = model(ixs)
|
||||
top = torch.topk(out[0], 8)
|
||||
top_indices = top.indices.tolist()
|
||||
top_probs = top.values.tolist()
|
||||
top_words = vocab.lookup_tokens(top_indices)
|
||||
pred_str = ""
|
||||
for word, prob in list(zip(top_words, top_probs)):
|
||||
pred_str += f"{word}:{prob} "
|
||||
return pred_str
|
||||
|
||||
|
||||
# In[31]:
|
||||
def predict(f):
|
||||
x = pd.read_csv(f'{f}/in.tsv.xz', sep='\t', header=None, quoting=csv.QUOTE_NONE, on_bad_lines='skip', encoding="UTF-8")[6]
|
||||
x = x.apply(data_preprocessing)
|
||||
|
||||
|
||||
def make_prediction(path, result_path):
|
||||
data = pd.read_csv(path, sep='\t', header=None, quoting=csv.QUOTE_NONE)
|
||||
with open(result_path, 'w', encoding='utf-8') as file_out:
|
||||
for _, row in data.iterrows():
|
||||
before, after = word_tokenize(data_preprocessing(str(row[6]))), word_tokenize(data_preprocessing(str(row[7])))
|
||||
if len(before) < 2 or len(after) < 2:
|
||||
pred = prediction
|
||||
with open(f'{f}/out.tsv', "w+", encoding="UTF-8") as f:
|
||||
for row in x:
|
||||
result = {}
|
||||
before = None
|
||||
for before in get_words_from_line(data_preprocessing(str(row)), False):
|
||||
pass
|
||||
before = [before]
|
||||
if(len(before) < 1):
|
||||
pred_str = prediction
|
||||
else:
|
||||
pred = predict(before[-1], after[0])
|
||||
file_out.write(pred + '\n')
|
||||
pred_str = predict_word(before)
|
||||
|
||||
pred_str = pred_str.strip()
|
||||
f.write(pred_str + "\n")
|
||||
|
||||
# In[32]:
|
||||
|
||||
|
||||
make_prediction("dev-0/in.tsv.xz", "dev-0/out.tsv")
|
||||
|
||||
|
||||
# In[33]:
|
||||
|
||||
|
||||
make_prediction("test-A/in.tsv.xz", "test-A/out.tsv")
|
||||
|
||||
prediction("dev-0/")
|
||||
prediction("test-A/")
|
146
run3.py
Executable file
146
run3.py
Executable file
@ -0,0 +1,146 @@
|
||||
#!/usr/bin/env python
|
||||
# coding: utf-8
|
||||
|
||||
# In[2]:
|
||||
|
||||
|
||||
from nltk import trigrams, word_tokenize
|
||||
import pandas as pd
|
||||
import csv
|
||||
import regex as re
|
||||
from collections import Counter, defaultdict
|
||||
import kenlm
|
||||
from english_words import english_words_alpha_set
|
||||
from math import log10
|
||||
|
||||
|
||||
# In[3]:
|
||||
|
||||
|
||||
train_set = pd.read_csv(
|
||||
'train/in.tsv.xz',
|
||||
sep='\t',
|
||||
header=None,
|
||||
quoting=csv.QUOTE_NONE,
|
||||
nrows=35000)
|
||||
|
||||
train_labels = pd.read_csv(
|
||||
'train/expected.tsv',
|
||||
sep='\t',
|
||||
header=None,
|
||||
quoting=csv.QUOTE_NONE,
|
||||
nrows=35000)
|
||||
|
||||
|
||||
# In[4]:
|
||||
|
||||
|
||||
data = pd.concat([train_set, train_labels], axis=1)
|
||||
|
||||
|
||||
# In[5]:
|
||||
|
||||
|
||||
data = train_set[6] + train_set[0] + train_set[7]
|
||||
|
||||
|
||||
# In[6]:
|
||||
|
||||
|
||||
def data_preprocessing(text):
|
||||
return re.sub(r'\p{P}', '', text.lower().replace('-\\n', '').replace('\\n', ' ').replace("'ll", " will").replace("-", "").replace("'ve", " have").replace("'s", " is"))
|
||||
|
||||
|
||||
# In[8]:
|
||||
|
||||
|
||||
data = data.apply(data_preprocessing)
|
||||
prediction = 'the:0.03 be:0.03 to:0.03 of:0.025 and:0.025 a:0.025 in:0.020 that:0.020 have:0.015 I:0.010 it:0.010 for:0.010 not:0.010 on:0.010 with:0.010 he:0.010 as:0.010 you:0.010 do:0.010 at:0.010 :0.77'
|
||||
|
||||
|
||||
# In[25]:
|
||||
|
||||
|
||||
with open("train_file.txt", "w+") as f:
|
||||
for text in data:
|
||||
f.write(text + "\n")
|
||||
|
||||
|
||||
# In[27]:
|
||||
|
||||
|
||||
KENLM_BUILD_PATH='../kenlm/build/bin/lmplz'
|
||||
|
||||
|
||||
# In[28]:
|
||||
|
||||
|
||||
get_ipython().system('$KENLM_BUILD_PATH -o 4 < train_file.txt > kenlm_model.arpa')
|
||||
|
||||
|
||||
# In[29]:
|
||||
|
||||
|
||||
import os
|
||||
print(os.getcwd())
|
||||
model = kenlm.Model('kenlm_model.arpa')
|
||||
|
||||
|
||||
# In[30]:
|
||||
|
||||
|
||||
def predict(before, after):
|
||||
result = ''
|
||||
prob = 0.0
|
||||
best = []
|
||||
for word in english_words_alpha_set:
|
||||
text = ' '.join([before, word, after])
|
||||
text_score = model.score(text, bos=False, eos=False)
|
||||
if len(best) < 12:
|
||||
best.append((word, text_score))
|
||||
else:
|
||||
is_better = False
|
||||
worst_score = None
|
||||
for score in best:
|
||||
if not worst_score:
|
||||
worst_score = score
|
||||
else:
|
||||
if worst_score[1] > score[1]:
|
||||
worst_score = score
|
||||
if worst_score[1] < text_score:
|
||||
best.remove(worst_score)
|
||||
best.append((word, text_score))
|
||||
probs = sorted(best, key=lambda tup: tup[1], reverse=True)
|
||||
pred_str = ''
|
||||
for word, prob in probs:
|
||||
pred_str += f'{word}:{prob} '
|
||||
pred_str += f':{log10(0.99)}'
|
||||
return pred_str
|
||||
|
||||
|
||||
# In[31]:
|
||||
|
||||
|
||||
def make_prediction(path, result_path):
|
||||
data = pd.read_csv(path, sep='\t', header=None, quoting=csv.QUOTE_NONE)
|
||||
with open(result_path, 'w', encoding='utf-8') as file_out:
|
||||
for _, row in data.iterrows():
|
||||
before, after = word_tokenize(data_preprocessing(str(row[6]))), word_tokenize(data_preprocessing(str(row[7])))
|
||||
if len(before) < 2 or len(after) < 2:
|
||||
pred = prediction
|
||||
else:
|
||||
pred = predict(before[-1], after[0])
|
||||
file_out.write(pred + '\n')
|
||||
|
||||
|
||||
# In[32]:
|
||||
|
||||
|
||||
make_prediction("dev-0/in.tsv.xz", "dev-0/out.tsv")
|
||||
|
||||
|
||||
# In[33]:
|
||||
|
||||
|
||||
make_prediction("test-A/in.tsv.xz", "test-A/out.tsv")
|
||||
|
Loading…
Reference in New Issue
Block a user