bigram
This commit is contained in:
parent
9d519941b0
commit
b22b9c3534
232
run.py
Executable file → Normal file
232
run.py
Executable file → Normal file
@ -1,22 +1,68 @@
|
|||||||
#!/usr/bin/env python
|
from itertools import islice
|
||||||
# coding: utf-8
|
|
||||||
|
|
||||||
# In[2]:
|
|
||||||
|
|
||||||
|
|
||||||
from nltk import trigrams, word_tokenize
|
|
||||||
import pandas as pd
|
|
||||||
import csv
|
|
||||||
import regex as re
|
import regex as re
|
||||||
from collections import Counter, defaultdict
|
import sys
|
||||||
import kenlm
|
from torchtext.vocab import build_vocab_from_iterator
|
||||||
from english_words import english_words_alpha_set
|
from torch import nn
|
||||||
from math import log10
|
import torch
|
||||||
|
from torch.utils.data import IterableDataset
|
||||||
|
import itertools
|
||||||
|
import pandas as pd
|
||||||
|
from torch.utils.data import DataLoader
|
||||||
|
import csv
|
||||||
|
|
||||||
|
def data_preprocessing(text):
|
||||||
|
return re.sub(r'\p{P}', '', text.lower().replace('-\\n', '').replace('\\n', ' ').replace("'ll", " will").replace("-", "").replace("'ve", " have").replace("'s", " is"))
|
||||||
|
|
||||||
|
def get_words_from_line(line):
|
||||||
|
line = line.rstrip()
|
||||||
|
yield '<s>'
|
||||||
|
for m in re.finditer(r'[\p{L}0-9\*]+|\p{P}+', line):
|
||||||
|
yield m.group(0).lower()
|
||||||
|
yield '</s>'
|
||||||
|
|
||||||
|
|
||||||
# In[3]:
|
def get_word_lines_from_file(data):
|
||||||
|
for line in data:
|
||||||
|
yield get_words_from_line(line)
|
||||||
|
|
||||||
|
|
||||||
|
class SimpleBigramNeuralLanguageModel(nn.Module):
|
||||||
|
def __init__(self, vocabulary_size, embedding_size):
|
||||||
|
super(SimpleBigramNeuralLanguageModel, self).__init__()
|
||||||
|
self.model = nn.Sequential(
|
||||||
|
nn.Embedding(vocabulary_size, embedding_size),
|
||||||
|
nn.Linear(embedding_size, vocabulary_size),
|
||||||
|
nn.Softmax()
|
||||||
|
)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
return self.model(x)
|
||||||
|
|
||||||
|
|
||||||
|
def look_ahead_iterator(gen):
|
||||||
|
prev = None
|
||||||
|
for item in gen:
|
||||||
|
if prev is not None:
|
||||||
|
yield (prev, item)
|
||||||
|
prev = item
|
||||||
|
|
||||||
|
class Bigrams(IterableDataset):
|
||||||
|
def __init__(self, text_file, vocabulary_size):
|
||||||
|
self.vocab = build_vocab_from_iterator(
|
||||||
|
get_word_lines_from_file(text_file),
|
||||||
|
max_tokens = vocabulary_size,
|
||||||
|
specials = ['<unk>'])
|
||||||
|
self.vocab.set_default_index(self.vocab['<unk>'])
|
||||||
|
self.vocabulary_size = vocabulary_size
|
||||||
|
self.text_file = text_file
|
||||||
|
|
||||||
|
def __iter__(self):
|
||||||
|
return look_ahead_iterator(
|
||||||
|
(self.vocab[t] for t in itertools.chain.from_iterable(get_word_lines_from_file(self.text_file))))
|
||||||
|
|
||||||
|
in_file = 'train/in.tsv.xz'
|
||||||
|
out_file = 'train/expected.tsv'
|
||||||
|
|
||||||
train_set = pd.read_csv(
|
train_set = pd.read_csv(
|
||||||
'train/in.tsv.xz',
|
'train/in.tsv.xz',
|
||||||
sep='\t',
|
sep='\t',
|
||||||
@ -31,116 +77,72 @@ train_labels = pd.read_csv(
|
|||||||
quoting=csv.QUOTE_NONE,
|
quoting=csv.QUOTE_NONE,
|
||||||
nrows=35000)
|
nrows=35000)
|
||||||
|
|
||||||
|
|
||||||
# In[4]:
|
|
||||||
|
|
||||||
|
|
||||||
data = pd.concat([train_set, train_labels], axis=1)
|
data = pd.concat([train_set, train_labels], axis=1)
|
||||||
|
|
||||||
|
|
||||||
# In[5]:
|
|
||||||
|
|
||||||
|
|
||||||
data = train_set[6] + train_set[0] + train_set[7]
|
data = train_set[6] + train_set[0] + train_set[7]
|
||||||
|
|
||||||
|
|
||||||
# In[6]:
|
|
||||||
|
|
||||||
|
|
||||||
def data_preprocessing(text):
|
|
||||||
return re.sub(r'\p{P}', '', text.lower().replace('-\\n', '').replace('\\n', ' ').replace("'ll", " will").replace("-", "").replace("'ve", " have").replace("'s", " is"))
|
|
||||||
|
|
||||||
|
|
||||||
# In[8]:
|
|
||||||
|
|
||||||
|
|
||||||
data = data.apply(data_preprocessing)
|
data = data.apply(data_preprocessing)
|
||||||
|
|
||||||
|
vocab_size = 30000
|
||||||
|
embed_size = 150
|
||||||
|
|
||||||
|
|
||||||
|
bigram_data = Bigrams(data, vocab_size)
|
||||||
|
|
||||||
|
device = 'cpu'
|
||||||
|
model = SimpleBigramNeuralLanguageModel(vocab_size, embed_size).to(device)
|
||||||
|
data = DataLoader(bigram_data, batch_size=5000)
|
||||||
|
optimizer = torch.optim.Adam(model.parameters())
|
||||||
|
criterion = torch.nn.NLLLoss()
|
||||||
|
|
||||||
|
model.train()
|
||||||
|
step = 0
|
||||||
|
for x, y in data:
|
||||||
|
x = x.to(device)
|
||||||
|
y = y.to(device)
|
||||||
|
optimizer.zero_grad()
|
||||||
|
ypredicted = model(x)
|
||||||
|
loss = criterion(torch.log(ypredicted), y)
|
||||||
|
if step % 100 == 0:
|
||||||
|
print(step, loss)
|
||||||
|
step += 1
|
||||||
|
loss.backward()
|
||||||
|
optimizer.step()
|
||||||
|
|
||||||
|
torch.save(model.state_dict(), 'model1.bin')
|
||||||
|
|
||||||
|
vocab = bigram_data.vocab
|
||||||
prediction = 'the:0.03 be:0.03 to:0.03 of:0.025 and:0.025 a:0.025 in:0.020 that:0.020 have:0.015 I:0.010 it:0.010 for:0.010 not:0.010 on:0.010 with:0.010 he:0.010 as:0.010 you:0.010 do:0.010 at:0.010 :0.77'
|
prediction = 'the:0.03 be:0.03 to:0.03 of:0.025 and:0.025 a:0.025 in:0.020 that:0.020 have:0.015 I:0.010 it:0.010 for:0.010 not:0.010 on:0.010 with:0.010 he:0.010 as:0.010 you:0.010 do:0.010 at:0.010 :0.77'
|
||||||
|
|
||||||
|
def predict_word(w):
|
||||||
# In[25]:
|
ixs = torch.tensor(vocab.forward(w)).to(device)
|
||||||
|
out = model(ixs)
|
||||||
|
top = torch.topk(out[0], 8)
|
||||||
with open("train_file.txt", "w+") as f:
|
top_indices = top.indices.tolist()
|
||||||
for text in data:
|
top_probs = top.values.tolist()
|
||||||
f.write(text + "\n")
|
top_words = vocab.lookup_tokens(top_indices)
|
||||||
|
pred_str = ""
|
||||||
|
for word, prob in list(zip(top_words, top_probs)):
|
||||||
# In[27]:
|
pred_str += f"{word}:{prob} "
|
||||||
|
|
||||||
|
|
||||||
KENLM_BUILD_PATH='../kenlm/build/bin/lmplz'
|
|
||||||
|
|
||||||
|
|
||||||
# In[28]:
|
|
||||||
|
|
||||||
|
|
||||||
get_ipython().system('$KENLM_BUILD_PATH -o 4 < train_file.txt > kenlm_model.arpa')
|
|
||||||
|
|
||||||
|
|
||||||
# In[29]:
|
|
||||||
|
|
||||||
|
|
||||||
import os
|
|
||||||
print(os.getcwd())
|
|
||||||
model = kenlm.Model('kenlm_model.arpa')
|
|
||||||
|
|
||||||
|
|
||||||
# In[30]:
|
|
||||||
|
|
||||||
|
|
||||||
def predict(before, after):
|
|
||||||
result = ''
|
|
||||||
prob = 0.0
|
|
||||||
best = []
|
|
||||||
for word in english_words_alpha_set:
|
|
||||||
text = ' '.join([before, word, after])
|
|
||||||
text_score = model.score(text, bos=False, eos=False)
|
|
||||||
if len(best) < 12:
|
|
||||||
best.append((word, text_score))
|
|
||||||
else:
|
|
||||||
is_better = False
|
|
||||||
worst_score = None
|
|
||||||
for score in best:
|
|
||||||
if not worst_score:
|
|
||||||
worst_score = score
|
|
||||||
else:
|
|
||||||
if worst_score[1] > score[1]:
|
|
||||||
worst_score = score
|
|
||||||
if worst_score[1] < text_score:
|
|
||||||
best.remove(worst_score)
|
|
||||||
best.append((word, text_score))
|
|
||||||
probs = sorted(best, key=lambda tup: tup[1], reverse=True)
|
|
||||||
pred_str = ''
|
|
||||||
for word, prob in probs:
|
|
||||||
pred_str += f'{word}:{prob} '
|
|
||||||
pred_str += f':{log10(0.99)}'
|
|
||||||
return pred_str
|
return pred_str
|
||||||
|
|
||||||
|
|
||||||
# In[31]:
|
def predict(f):
|
||||||
|
x = pd.read_csv(f'{f}/in.tsv.xz', sep='\t', header=None, quoting=csv.QUOTE_NONE, on_bad_lines='skip', encoding="UTF-8")[6]
|
||||||
|
x = x.apply(data_preprocessing)
|
||||||
|
|
||||||
|
with open(f'{f}/out.tsv', "w+", encoding="UTF-8") as f:
|
||||||
def make_prediction(path, result_path):
|
for row in x:
|
||||||
data = pd.read_csv(path, sep='\t', header=None, quoting=csv.QUOTE_NONE)
|
result = {}
|
||||||
with open(result_path, 'w', encoding='utf-8') as file_out:
|
before = None
|
||||||
for _, row in data.iterrows():
|
for before in get_words_from_line(data_preprocessing(str(row)), False):
|
||||||
before, after = word_tokenize(data_preprocessing(str(row[6]))), word_tokenize(data_preprocessing(str(row[7])))
|
pass
|
||||||
if len(before) < 2 or len(after) < 2:
|
before = [before]
|
||||||
pred = prediction
|
if(len(before) < 1):
|
||||||
|
pred_str = prediction
|
||||||
else:
|
else:
|
||||||
pred = predict(before[-1], after[0])
|
pred_str = predict_word(before)
|
||||||
file_out.write(pred + '\n')
|
|
||||||
|
|
||||||
|
pred_str = pred_str.strip()
|
||||||
|
f.write(pred_str + "\n")
|
||||||
|
|
||||||
# In[32]:
|
prediction("dev-0/")
|
||||||
|
prediction("test-A/")
|
||||||
|
|
||||||
make_prediction("dev-0/in.tsv.xz", "dev-0/out.tsv")
|
|
||||||
|
|
||||||
|
|
||||||
# In[33]:
|
|
||||||
|
|
||||||
|
|
||||||
make_prediction("test-A/in.tsv.xz", "test-A/out.tsv")
|
|
||||||
|
|
146
run3.py
Executable file
146
run3.py
Executable file
@ -0,0 +1,146 @@
|
|||||||
|
#!/usr/bin/env python
|
||||||
|
# coding: utf-8
|
||||||
|
|
||||||
|
# In[2]:
|
||||||
|
|
||||||
|
|
||||||
|
from nltk import trigrams, word_tokenize
|
||||||
|
import pandas as pd
|
||||||
|
import csv
|
||||||
|
import regex as re
|
||||||
|
from collections import Counter, defaultdict
|
||||||
|
import kenlm
|
||||||
|
from english_words import english_words_alpha_set
|
||||||
|
from math import log10
|
||||||
|
|
||||||
|
|
||||||
|
# In[3]:
|
||||||
|
|
||||||
|
|
||||||
|
train_set = pd.read_csv(
|
||||||
|
'train/in.tsv.xz',
|
||||||
|
sep='\t',
|
||||||
|
header=None,
|
||||||
|
quoting=csv.QUOTE_NONE,
|
||||||
|
nrows=35000)
|
||||||
|
|
||||||
|
train_labels = pd.read_csv(
|
||||||
|
'train/expected.tsv',
|
||||||
|
sep='\t',
|
||||||
|
header=None,
|
||||||
|
quoting=csv.QUOTE_NONE,
|
||||||
|
nrows=35000)
|
||||||
|
|
||||||
|
|
||||||
|
# In[4]:
|
||||||
|
|
||||||
|
|
||||||
|
data = pd.concat([train_set, train_labels], axis=1)
|
||||||
|
|
||||||
|
|
||||||
|
# In[5]:
|
||||||
|
|
||||||
|
|
||||||
|
data = train_set[6] + train_set[0] + train_set[7]
|
||||||
|
|
||||||
|
|
||||||
|
# In[6]:
|
||||||
|
|
||||||
|
|
||||||
|
def data_preprocessing(text):
|
||||||
|
return re.sub(r'\p{P}', '', text.lower().replace('-\\n', '').replace('\\n', ' ').replace("'ll", " will").replace("-", "").replace("'ve", " have").replace("'s", " is"))
|
||||||
|
|
||||||
|
|
||||||
|
# In[8]:
|
||||||
|
|
||||||
|
|
||||||
|
data = data.apply(data_preprocessing)
|
||||||
|
prediction = 'the:0.03 be:0.03 to:0.03 of:0.025 and:0.025 a:0.025 in:0.020 that:0.020 have:0.015 I:0.010 it:0.010 for:0.010 not:0.010 on:0.010 with:0.010 he:0.010 as:0.010 you:0.010 do:0.010 at:0.010 :0.77'
|
||||||
|
|
||||||
|
|
||||||
|
# In[25]:
|
||||||
|
|
||||||
|
|
||||||
|
with open("train_file.txt", "w+") as f:
|
||||||
|
for text in data:
|
||||||
|
f.write(text + "\n")
|
||||||
|
|
||||||
|
|
||||||
|
# In[27]:
|
||||||
|
|
||||||
|
|
||||||
|
KENLM_BUILD_PATH='../kenlm/build/bin/lmplz'
|
||||||
|
|
||||||
|
|
||||||
|
# In[28]:
|
||||||
|
|
||||||
|
|
||||||
|
get_ipython().system('$KENLM_BUILD_PATH -o 4 < train_file.txt > kenlm_model.arpa')
|
||||||
|
|
||||||
|
|
||||||
|
# In[29]:
|
||||||
|
|
||||||
|
|
||||||
|
import os
|
||||||
|
print(os.getcwd())
|
||||||
|
model = kenlm.Model('kenlm_model.arpa')
|
||||||
|
|
||||||
|
|
||||||
|
# In[30]:
|
||||||
|
|
||||||
|
|
||||||
|
def predict(before, after):
|
||||||
|
result = ''
|
||||||
|
prob = 0.0
|
||||||
|
best = []
|
||||||
|
for word in english_words_alpha_set:
|
||||||
|
text = ' '.join([before, word, after])
|
||||||
|
text_score = model.score(text, bos=False, eos=False)
|
||||||
|
if len(best) < 12:
|
||||||
|
best.append((word, text_score))
|
||||||
|
else:
|
||||||
|
is_better = False
|
||||||
|
worst_score = None
|
||||||
|
for score in best:
|
||||||
|
if not worst_score:
|
||||||
|
worst_score = score
|
||||||
|
else:
|
||||||
|
if worst_score[1] > score[1]:
|
||||||
|
worst_score = score
|
||||||
|
if worst_score[1] < text_score:
|
||||||
|
best.remove(worst_score)
|
||||||
|
best.append((word, text_score))
|
||||||
|
probs = sorted(best, key=lambda tup: tup[1], reverse=True)
|
||||||
|
pred_str = ''
|
||||||
|
for word, prob in probs:
|
||||||
|
pred_str += f'{word}:{prob} '
|
||||||
|
pred_str += f':{log10(0.99)}'
|
||||||
|
return pred_str
|
||||||
|
|
||||||
|
|
||||||
|
# In[31]:
|
||||||
|
|
||||||
|
|
||||||
|
def make_prediction(path, result_path):
|
||||||
|
data = pd.read_csv(path, sep='\t', header=None, quoting=csv.QUOTE_NONE)
|
||||||
|
with open(result_path, 'w', encoding='utf-8') as file_out:
|
||||||
|
for _, row in data.iterrows():
|
||||||
|
before, after = word_tokenize(data_preprocessing(str(row[6]))), word_tokenize(data_preprocessing(str(row[7])))
|
||||||
|
if len(before) < 2 or len(after) < 2:
|
||||||
|
pred = prediction
|
||||||
|
else:
|
||||||
|
pred = predict(before[-1], after[0])
|
||||||
|
file_out.write(pred + '\n')
|
||||||
|
|
||||||
|
|
||||||
|
# In[32]:
|
||||||
|
|
||||||
|
|
||||||
|
make_prediction("dev-0/in.tsv.xz", "dev-0/out.tsv")
|
||||||
|
|
||||||
|
|
||||||
|
# In[33]:
|
||||||
|
|
||||||
|
|
||||||
|
make_prediction("test-A/in.tsv.xz", "test-A/out.tsv")
|
||||||
|
|
Loading…
Reference in New Issue
Block a user