forked from kubapok/en-ner-conll-2003
load_data and tokenize
This commit is contained in:
parent
37da463746
commit
0553a8f27f
1
.gitignore
vendored
1
.gitignore
vendored
@ -1,2 +1,3 @@
|
||||
*~
|
||||
*.pyc
|
||||
venv/*
|
47
seq.py
47
seq.py
@ -1,21 +1,48 @@
|
||||
from numpy.lib.shape_base import split
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
import gensim
|
||||
import torch
|
||||
import pandas as pd
|
||||
import seaborn as sns
|
||||
from sklearn.model_selection import train_test_split
|
||||
from collections import Counter
|
||||
from torchtext.vocab import Vocab
|
||||
|
||||
|
||||
# Functions from jupyter
|
||||
def build_vocab(dataset):
|
||||
counter = Counter()
|
||||
for document in dataset:
|
||||
counter.update(document)
|
||||
return Vocab(counter, specials=['<unk>', '<pad>', '<bos>', '<eos>'])
|
||||
|
||||
|
||||
def data_process(dt, vocab):
|
||||
return [torch.tensor([vocab['<bos>']] + [vocab[token] for token in document] + [vocab['<eos>']], dtype=torch.long) for document in dt]
|
||||
|
||||
|
||||
def labels_process(dt, vocab):
|
||||
return [torch.tensor([0] + document + [0], dtype=torch.long) for document in dt]
|
||||
|
||||
|
||||
# Load data
|
||||
train = pd.read_csv('train/train.tsv', sep='\t', names=['labels', 'document'])
|
||||
Y_train = train['labels'].values
|
||||
X_train = train['document'].values
|
||||
def load_data():
|
||||
train = pd.read_csv('train/train.tsv', sep='\t',
|
||||
names=['labels', 'document'])
|
||||
|
||||
test = pd.read_csv('test-A/in.tsv', sep='\t', names=['document'])
|
||||
X_test = test['document'].values
|
||||
Y_train = [y.split(sep=" ") for y in train['labels'].values]
|
||||
X_train = [x.split(sep=" ") for x in train['document'].values]
|
||||
|
||||
dev = pd.read_csv('dev-0/in.tsv', sep='\t', names=['document'])
|
||||
exp = pd.read_csv('dev-0/expected.tsv', sep='\t', names=['labels'])
|
||||
X_dev = dev['document'].values
|
||||
Y_dev = dev['labels'].values
|
||||
dev = pd.read_csv('dev-0/in.tsv', sep='\t', names=['document'])
|
||||
exp = pd.read_csv('dev-0/expected.tsv', sep='\t', names=['labels'])
|
||||
X_dev = [x.split(sep=" ") for x in dev['document'].values]
|
||||
Y_dev = [y.split(sep=" ") for y in exp['labels'].values]
|
||||
|
||||
test = pd.read_csv('test-A/in.tsv', sep='\t', names=['document'])
|
||||
X_test = test['document'].values
|
||||
|
||||
return X_train, Y_train, X_dev, Y_dev, X_test
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
X_train, Y_train, X_dev, Y_dev, X_test = load_data()
|
||||
|
Loading…
Reference in New Issue
Block a user