working on eval

This commit is contained in:
Maciej Sobkowiak 2021-06-22 03:40:29 +02:00
parent 81fa0ec07f
commit 48d472eb45

81
seq.py
View File

@ -6,12 +6,13 @@ import torch
import pandas as pd
from sklearn.model_selection import train_test_split
from collections import Counter
from torchtext.vocab import Vocab
from torchtext.vocab import vocab
from TorchCRF import CRF
from tqdm import tqdm
EPOCHS = 5
EPOCHS = 1
BATCH = 1
SEQ_LEN = 5
# Functions from jupyter
@ -20,11 +21,13 @@ def build_vocab(dataset):
counter = Counter()
for document in dataset:
counter.update(document)
return Vocab(counter)
v = vocab(counter)
v.set_default_index(0)
return v
def data_process(dt, vocab):
return [torch.tensor([vocab['<bos>']] + [vocab[token] for token in document] + [vocab['<eos>']], dtype=torch.long) for document in dt]
return [torch.tensor([vocab[token] for token in document], dtype=torch.long) for document in dt]
def get_scores(y_true, y_pred):
@ -33,17 +36,13 @@ def get_scores(y_true, y_pred):
fp = 0
selected_items = 0
relevant_items = 0
for p, t in zip(y_pred, y_true):
if p == t:
acc_score += 1
if p > 0 and p == t:
tp += 1
if p > 0:
selected_items += 1
if t > 0:
relevant_items += 1
@ -65,26 +64,11 @@ def get_scores(y_true, y_pred):
return precision, recall, f1
def eval_model(dataset_tokens, dataset_labels, model):
Y_true = []
Y_pred = []
for i in tqdm(range(len(dataset_labels))):
batch_tokens = dataset_tokens[i].unsqueeze(0)
tags = list(dataset_labels[i].numpy())
Y_true += tags
Y_batch_pred_weights = model(batch_tokens).squeeze(0)
Y_batch_pred = torch.argmax(Y_batch_pred_weights, 1)
Y_pred += list(Y_batch_pred.numpy())
return get_scores(Y_true, Y_pred)
class GRU(torch.nn.Module):
def __init__(self, vocab_len):
super(GRU, self).__init__()
self.emb = torch.nn.Embedding(vocab_len, 100)
self.rec = torch.nn.GRU(100, 256, 2, batch_first=True, dropout=0.2)
self.rec = torch.nn.GRU(100, 256, 1, batch_first=True, dropout=0.2)
self.fc1 = torch.nn.Linear(256, 9)
def forward(self, x):
@ -131,6 +115,42 @@ def train(model, crf, train_tokens, labels_tokens):
optimizer.step()
def data_translate(dt, vocab):
return [[vocab.itos[token] for token in document] for document in dt]
def dev_eval(model, crf, dev_tokens, dev_labels_tokens, vocab):
Y_true = []
Y_pred = []
model.eval()
crf.eval()
for i in tqdm(range(len(dev_labels_tokens))):
batch_tokens = dev_tokens[i].unsqueeze(0)
tags = list(dev_labels_tokens[i].numpy())
Y_true += tags
Y_batch_pred_weights = model(batch_tokens).squeeze(0)
Y_batch_pred = torch.argmax(Y_batch_pred_weights, 1)
# Y_pred += list(Y_batch_pred.numpy())
Y_pred += [crf.decode(Y_batch_pred)[0]]
# print(Y_pred)
# Y_pred_translated = data_translate(Y_pred, vocab)
# with open('dev-0/out.tsv', "w+") as file:
# temp_str = ""
# for i in Y_pred_translated:
# for j in i:
# temp_str += str(j)
# temp_str += " "
# temp_str = temp_str[:-1]
# temp_str += "\n"
# temp_str = temp_str[:-1]
# file.write(temp_str)
precision, recall, f1 = get_scores(Y_true, Y_pred)
print(f'precision: {0}, recall: {1}, f1: {2}', precision, recall, f1)
if __name__ == "__main__":
X_train, Y_train, X_dev, Y_dev, X_test = load_data()
vocab_x = build_vocab(X_train)
@ -138,11 +158,16 @@ if __name__ == "__main__":
train_tokens = data_process(X_train, vocab_x)
labels_tokens = data_process(Y_train, vocab_y)
# model
model = GRU(len(vocab_x))
print(model)
# train
print(len(vocab_x.get_itos()))
model = GRU(len(vocab_x.get_itos()))
crf = CRF(9)
p = list(model.parameters()) + list(crf.parameters())
optimizer = torch.optim.Adam(p)
# mask = torch.ByteTensor([1, 1]) # (batch_size. sequence_size)
# # mask = torch.ByteTensor([1, 1]) # (batch_size. sequence_size)
train(model, crf, train_tokens, labels_tokens)
# eval dev
dev_tokens = data_process(X_dev, vocab_x)
dev_labels_tokens = data_process(Y_dev, vocab_y)
dev_eval(model, crf, dev_tokens, dev_labels_tokens, vocab_x)