from numpy.lib.shape_base import split import pandas as pd import numpy as np import gensim import torch import pandas as pd from sklearn.model_selection import train_test_split from collections import Counter from torchtext.vocab import vocab from TorchCRF import CRF from tqdm import tqdm EPOCHS = 1 BATCH = 5 SEQ_LEN = 5 # Functions from jupyter def build_vocab(dataset): counter = Counter() for document in dataset: counter.update(document) v = vocab(counter) v.set_default_index(0) return v def data_process(dt, vocab): return [torch.tensor([vocab[token] for token in document], dtype=torch.long) for document in dt] def get_scores(y_true, y_pred): y_true = [item for sublist in y_true for item in sublist] y_pred = [item for sublist in y_pred for item in sublist] acc_score = 0 for p, t in zip(y_pred, y_true): if p == t: acc_score += 1 return acc_score / len(y_pred) class GRU(torch.nn.Module): def __init__(self, vocab_len): super(GRU, self).__init__() self.emb = torch.nn.Embedding(vocab_len, 100) self.rec = torch.nn.GRU(100, 256, 1, batch_first=True, dropout=0.2) self.fc1 = torch.nn.Linear(256, 9) def forward(self, x): emb = torch.relu(self.emb(x)) gru_output, h_n = self.rec(emb) out_weights = self.fc1(gru_output) return out_weights # Helpers def translate(dt, vocab): translated = [] for d in dt: translated.append([vocab.get_itos()[token] for token in d]) return translated def save_to_file(out, out_path): with open(out_path, 'w+') as f: for row in out: f.write(' '.join([str(elem) for elem in row]) + '\n') # Load data def load_data(): train = pd.read_csv('train/train.tsv', sep='\t', names=['labels', 'document']) Y_train = [y.split(sep=" ") for y in train['labels'].values] X_train = [x.split(sep=" ") for x in train['document'].values] dev = pd.read_csv('dev-0/in.tsv', sep='\t', names=['document']) exp = pd.read_csv('dev-0/expected.tsv', sep='\t', names=['labels']) X_dev = [x.split(sep=" ") for x in dev['document'].values] Y_dev = [y.split(sep=" ") for y in exp['labels'].values] test = pd.read_csv('test-A/in.tsv', sep='\t', names=['document']) X_test = test['document'].values return X_train, Y_train, X_dev, Y_dev, X_test # Train and save model def train(model, crf, train_tokens, labels_tokens): for i in range(EPOCHS): crf.train() model.train() for i in tqdm(range(len(labels_tokens))): batch_tokens = train_tokens[i].unsqueeze(0) tags = labels_tokens[i].unsqueeze(1) predicted_tags = model(batch_tokens).squeeze(0).unsqueeze(1) optimizer.zero_grad() loss = -crf(predicted_tags, tags) loss.backward() optimizer.step() torch.save(model.state_dict(), "model.torch") # Eval dev set and save output def dev_eval(model, crf, dev_tokens, dev_labels_tokens, vocab): Y_true = [] Y_pred = [] model.eval() crf.eval() for i in tqdm(range(len(dev_labels_tokens))): batch_tokens = dev_tokens[i].unsqueeze(0) tags = labels_tokens[i].unsqueeze(1) Y_true += [tags] Y_batch_pred = model(batch_tokens).squeeze(0).unsqueeze(1) Y_pred += [crf.decode(Y_batch_pred)[0]] Y_pred_translate = translate(Y_pred, vocab) Y_true_translate = translate(Y_true, vocab) precision = get_scores(Y_pred_translate, Y_true_translate) print(f'precision: {precision}'.format(precision)) return Y_pred_translate if __name__ == "__main__": X_train, Y_train, X_dev, Y_dev, X_test = load_data() vocab_x = build_vocab(X_train) vocab_y = build_vocab(Y_train) train_tokens = data_process(X_train, vocab_x) labels_tokens = data_process(Y_train, vocab_y) # train model = GRU(len(vocab_x.get_itos())) crf = CRF(9) p = list(model.parameters()) + list(crf.parameters()) optimizer = torch.optim.Adam(p) # # mask = torch.ByteTensor([1, 1]) # (batch_size. sequence_size) # train(model, crf, train_tokens, labels_tokens) # eval dev model.load_state_dict(torch.load("model.torch")) dev_tokens = data_process(X_dev, vocab_x) dev_labels_tokens = data_process(Y_dev, vocab_y) dev_pred = dev_eval(model, crf, dev_tokens, dev_labels_tokens, vocab_y) # print(dev_pred) # print(len(Y_dev[0])) save_to_file(dev_pred, 'dev-0/out.tsv')