from numpy.lib.shape_base import split import pandas as pd import numpy as np import gensim import torch import pandas as pd from sklearn.model_selection import train_test_split from collections import Counter from torchtext.vocab import vocab from TorchCRF import CRF from tqdm import tqdm EPOCHS = 1 BATCH = 1 SEQ_LEN = 5 # Functions from jupyter def build_vocab(dataset): counter = Counter() for document in dataset: counter.update(document) v = vocab(counter) v.set_default_index(0) return v def data_process(dt, vocab): return [torch.tensor([vocab[token] for token in document], dtype=torch.long) for document in dt] def get_scores(y_true, y_pred): acc_score = 0 tp = 0 fp = 0 selected_items = 0 relevant_items = 0 for p, t in zip(y_pred, y_true): if p == t: acc_score += 1 if p > 0 and p == t: tp += 1 if p > 0: selected_items += 1 if t > 0: relevant_items += 1 if selected_items == 0: precision = 1.0 else: precision = tp / selected_items if relevant_items == 0: recall = 1.0 else: recall = tp / relevant_items if precision + recall == 0.0: f1 = 0.0 else: f1 = 2 * precision * recall / (precision + recall) return precision, recall, f1 class GRU(torch.nn.Module): def __init__(self, vocab_len): super(GRU, self).__init__() self.emb = torch.nn.Embedding(vocab_len, 100) self.rec = torch.nn.GRU(100, 256, 1, batch_first=True, dropout=0.2) self.fc1 = torch.nn.Linear(256, 9) def forward(self, x): emb = torch.relu(self.emb(x)) gru_output, h_n = self.rec(emb) out_weights = self.fc1(gru_output) return out_weights # Load data def load_data(): train = pd.read_csv('train/train.tsv', sep='\t', names=['labels', 'document']) Y_train = [y.split(sep=" ") for y in train['labels'].values] X_train = [x.split(sep=" ") for x in train['document'].values] dev = pd.read_csv('dev-0/in.tsv', sep='\t', names=['document']) exp = pd.read_csv('dev-0/expected.tsv', sep='\t', names=['labels']) X_dev = [x.split(sep=" ") for x in dev['document'].values] Y_dev = [y.split(sep=" ") for y in exp['labels'].values] test = pd.read_csv('test-A/in.tsv', sep='\t', names=['document']) X_test = test['document'].values return X_train, Y_train, X_dev, Y_dev, X_test def train(model, crf, train_tokens, labels_tokens): for i in range(EPOCHS): crf.train() model.train() for i in tqdm(range(len(labels_tokens))): batch_tokens = train_tokens[i].unsqueeze(0) tags = labels_tokens[i].unsqueeze(1) predicted_tags = model(batch_tokens).squeeze(0).unsqueeze(1) optimizer.zero_grad() loss = -crf(predicted_tags, tags) loss.backward() optimizer.step() def data_translate(dt, vocab): return [[vocab.itos[token] for token in document] for document in dt] def dev_eval(model, crf, dev_tokens, dev_labels_tokens, vocab): Y_true = [] Y_pred = [] model.eval() crf.eval() for i in tqdm(range(len(dev_labels_tokens))): batch_tokens = dev_tokens[i].unsqueeze(0) tags = list(dev_labels_tokens[i].numpy()) Y_true += tags Y_batch_pred_weights = model(batch_tokens).squeeze(0) Y_batch_pred = torch.argmax(Y_batch_pred_weights, 1) # Y_pred += list(Y_batch_pred.numpy()) Y_pred += [crf.decode(Y_batch_pred)[0]] # print(Y_pred) # Y_pred_translated = data_translate(Y_pred, vocab) # with open('dev-0/out.tsv', "w+") as file: # temp_str = "" # for i in Y_pred_translated: # for j in i: # temp_str += str(j) # temp_str += " " # temp_str = temp_str[:-1] # temp_str += "\n" # temp_str = temp_str[:-1] # file.write(temp_str) precision, recall, f1 = get_scores(Y_true, Y_pred) print(f'precision: {0}, recall: {1}, f1: {2}', precision, recall, f1) if __name__ == "__main__": X_train, Y_train, X_dev, Y_dev, X_test = load_data() vocab_x = build_vocab(X_train) vocab_y = build_vocab(Y_train) train_tokens = data_process(X_train, vocab_x) labels_tokens = data_process(Y_train, vocab_y) # train print(len(vocab_x.get_itos())) model = GRU(len(vocab_x.get_itos())) crf = CRF(9) p = list(model.parameters()) + list(crf.parameters()) optimizer = torch.optim.Adam(p) # # mask = torch.ByteTensor([1, 1]) # (batch_size. sequence_size) train(model, crf, train_tokens, labels_tokens) # eval dev dev_tokens = data_process(X_dev, vocab_x) dev_labels_tokens = data_process(Y_dev, vocab_y) dev_eval(model, crf, dev_tokens, dev_labels_tokens, vocab_x)