en-ner-conll-2003/seq.py
2021-06-23 00:27:54 +02:00

199 lines
5.6 KiB
Python

from numpy.lib.shape_base import split
import pandas as pd
import numpy as np
import gensim
import torch
import pandas as pd
from sklearn.model_selection import train_test_split
from collections import Counter
from torchtext.vocab import vocab
from TorchCRF import CRF
from tqdm import tqdm
EPOCHS = 1
BATCH = 5
SEQ_LEN = 5
# Functions from jupyter
def build_vocab(dataset):
counter = Counter()
for document in dataset:
counter.update(document)
v = vocab(counter)
v.set_default_index(0)
return v
def data_process(dt, vocab):
return [torch.tensor([vocab[token] for token in document], dtype=torch.long) for document in dt]
def get_scores(y_true, y_pred):
y_true = [item for sublist in y_true for item in sublist]
y_pred = [item for sublist in y_pred for item in sublist]
acc_score = 0
for p, t in zip(y_pred, y_true):
if p == t:
acc_score += 1
return acc_score / len(y_pred)
class GRU(torch.nn.Module):
def __init__(self, vocab_len):
super(GRU, self).__init__()
self.emb = torch.nn.Embedding(vocab_len, 100)
self.rec = torch.nn.GRU(100, 256, 1, batch_first=True, dropout=0.2)
self.fc1 = torch.nn.Linear(256, 9)
def forward(self, x):
emb = torch.relu(self.emb(x))
gru_output, h_n = self.rec(emb)
out_weights = self.fc1(gru_output)
return out_weights
# Helpers
def translate(dt, vocab):
translated = []
for d in dt:
translated.append([vocab.get_itos()[token] for token in d])
return translated
def FIX_OUTPUT_FOR_GEVAL(out):
result = []
for line in out:
last_label = None
new_line = []
for label in line:
if(label != "O" and label[0:2] == "I-"):
if last_label == None or last_label == "O":
label = label.replace('I-', 'B-')
else:
label = "I-" + last_label[2:]
last_label = label
new_line.append(label)
x = (" ".join(new_line))
result.append(" ".join(new_line))
return result
def save_to_file(out, out_path):
lines = FIX_OUTPUT_FOR_GEVAL(out)
with open(out_path, 'w+') as f:
for line in lines:
f.write(str(line) + '\n')
# Load data
def load_data():
train = pd.read_csv('train/train.tsv', sep='\t',
names=['labels', 'document'])
Y_train = [y.split(sep=" ") for y in train['labels'].values]
X_train = [x.split(sep=" ") for x in train['document'].values]
dev = pd.read_csv('dev-0/in.tsv', sep='\t', names=['document'])
exp = pd.read_csv('dev-0/expected.tsv', sep='\t', names=['labels'])
X_dev = [x.split(sep=" ") for x in dev['document'].values]
Y_dev = [y.split(sep=" ") for y in exp['labels'].values]
test = pd.read_csv('test-A/in.tsv', sep='\t', names=['document'])
X_test = [x.split(sep=" ") for x in test['document'].values]
return X_train, Y_train, X_dev, Y_dev, X_test
# Train and save model
def train(model, crf, train_tokens, labels_tokens):
for i in range(EPOCHS):
crf.train()
model.train()
for i in tqdm(range(len(labels_tokens))):
batch_tokens = train_tokens[i].unsqueeze(0)
tags = labels_tokens[i].unsqueeze(1)
predicted_tags = model(batch_tokens).squeeze(0).unsqueeze(1)
optimizer.zero_grad()
loss = -crf(predicted_tags, tags)
loss.backward()
optimizer.step()
torch.save(model.state_dict(), "model.torch")
# Eval dev set and save output
def dev_eval(model, crf, dev_tokens, dev_labels_tokens, vocab):
Y_true = []
Y_pred = []
model.eval()
crf.eval()
for i in tqdm(range(len(dev_labels_tokens))):
batch_tokens = dev_tokens[i].unsqueeze(0)
tags = labels_tokens[i].unsqueeze(1)
Y_true += [tags]
Y_batch_pred = model(batch_tokens).squeeze(0).unsqueeze(1)
Y_pred += [crf.decode(Y_batch_pred)[0]]
Y_pred_translate = translate(Y_pred, vocab)
Y_true_translate = translate(Y_true, vocab)
precision = get_scores(Y_pred_translate, Y_true_translate)
print(f'precision: {precision}'.format(precision))
return Y_pred_translate
def test_eval(model, crf, test_tokens, vocab):
Y_pred = []
model.eval()
crf.eval()
for i in tqdm(range(len(test_tokens))):
batch_tokens = test_tokens[i].unsqueeze(0)
Y_batch_pred = model(batch_tokens).squeeze(0).unsqueeze(1)
Y_pred += [crf.decode(Y_batch_pred)[0]]
Y_pred_translate = translate(Y_pred, vocab)
return Y_pred_translate
if __name__ == "__main__":
X_train, Y_train, X_dev, Y_dev, X_test = load_data()
vocab_x = build_vocab(X_train)
vocab_y = build_vocab(Y_train)
train_tokens = data_process(X_train, vocab_x)
labels_tokens = data_process(Y_train, vocab_y)
# train
model = GRU(len(vocab_x.get_itos()))
crf = CRF(9)
p = list(model.parameters()) + list(crf.parameters())
optimizer = torch.optim.Adam(p)
# # mask = torch.ByteTensor([1, 1]) # (batch_size. sequence_size)
# train(model, crf, train_tokens, labels_tokens)
# eval dev
# model.load_state_dict(torch.load("model.torch"))
# dev_tokens = data_process(X_dev, vocab_x)
# dev_labels_tokens = data_process(Y_dev, vocab_y)
# dev_pred = dev_eval(model, crf, dev_tokens, dev_labels_tokens, vocab_y)
# save_to_file(dev_pred, 'dev-0/out.tsv')
# predict test
model.load_state_dict(torch.load("model.torch"))
test_tokens = data_process(X_test, vocab_x)
test_pred = test_eval(model, crf, test_tokens, vocab_y)
save_to_file(test_pred, 'test-A/out.tsv')