2021-03-21 20:28:34 +01:00
|
|
|
|
{
|
2021-03-21 20:43:50 +01:00
|
|
|
|
"cells": [
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
2021-03-22 00:03:37 +01:00
|
|
|
|
"execution_count": 27,
|
|
|
|
|
"id": "decreased-eight",
|
2021-03-21 20:43:50 +01:00
|
|
|
|
"metadata": {},
|
2021-03-21 20:44:09 +01:00
|
|
|
|
"outputs": [
|
|
|
|
|
{
|
2021-03-22 00:03:37 +01:00
|
|
|
|
"name": "stdout",
|
2021-03-21 20:44:09 +01:00
|
|
|
|
"output_type": "stream",
|
|
|
|
|
"text": [
|
2021-03-22 00:03:37 +01:00
|
|
|
|
"Requirement already satisfied: kaggle in /home/maciej/.local/lib/python3.8/site-packages (1.5.12)\n",
|
|
|
|
|
"Requirement already satisfied: certifi in /usr/lib/python3/dist-packages (from kaggle) (2019.11.28)\n",
|
|
|
|
|
"Requirement already satisfied: six>=1.10 in /usr/lib/python3/dist-packages (from kaggle) (1.14.0)\n",
|
|
|
|
|
"Requirement already satisfied: requests in /usr/lib/python3/dist-packages (from kaggle) (2.22.0)\n",
|
|
|
|
|
"Requirement already satisfied: tqdm in /home/maciej/.local/lib/python3.8/site-packages (from kaggle) (4.59.0)\n",
|
|
|
|
|
"Requirement already satisfied: urllib3 in /usr/lib/python3/dist-packages (from kaggle) (1.25.8)\n",
|
|
|
|
|
"Requirement already satisfied: python-dateutil in /usr/lib/python3/dist-packages (from kaggle) (2.7.3)\n",
|
|
|
|
|
"Requirement already satisfied: python-slugify in /home/maciej/.local/lib/python3.8/site-packages (from kaggle) (4.0.1)\n",
|
|
|
|
|
"Requirement already satisfied: text-unidecode>=1.3 in /home/maciej/.local/lib/python3.8/site-packages (from python-slugify->kaggle) (1.3)\n",
|
|
|
|
|
"Requirement already satisfied: pandas in /home/maciej/.local/lib/python3.8/site-packages (1.2.3)\n",
|
|
|
|
|
"Requirement already satisfied: numpy>=1.16.5 in /home/maciej/.local/lib/python3.8/site-packages (from pandas) (1.20.1)\n",
|
|
|
|
|
"Requirement already satisfied: pytz>=2017.3 in /usr/lib/python3/dist-packages (from pandas) (2019.3)\n",
|
|
|
|
|
"Requirement already satisfied: python-dateutil>=2.7.3 in /usr/lib/python3/dist-packages (from pandas) (2.7.3)\n",
|
|
|
|
|
"Requirement already satisfied: sklearn in /home/maciej/.local/lib/python3.8/site-packages (0.0)\n",
|
|
|
|
|
"Requirement already satisfied: scikit-learn in /home/maciej/.local/lib/python3.8/site-packages (from sklearn) (0.24.1)\n",
|
|
|
|
|
"Requirement already satisfied: threadpoolctl>=2.0.0 in /home/maciej/.local/lib/python3.8/site-packages (from scikit-learn->sklearn) (2.1.0)\n",
|
|
|
|
|
"Requirement already satisfied: joblib>=0.11 in /home/maciej/.local/lib/python3.8/site-packages (from scikit-learn->sklearn) (1.0.1)\n",
|
|
|
|
|
"Requirement already satisfied: numpy>=1.13.3 in /home/maciej/.local/lib/python3.8/site-packages (from scikit-learn->sklearn) (1.20.1)\n",
|
|
|
|
|
"Requirement already satisfied: scipy>=0.19.1 in /home/maciej/.local/lib/python3.8/site-packages (from scikit-learn->sklearn) (1.6.1)\n",
|
|
|
|
|
"Collecting matplotlib\n",
|
|
|
|
|
" Downloading matplotlib-3.3.4-cp38-cp38-manylinux1_x86_64.whl (11.6 MB)\n",
|
|
|
|
|
"\u001b[K |████████████████████████████████| 11.6 MB 39 kB/s eta 0:00:01 |██████████▏ | 3.7 MB 5.2 MB/s eta 0:00:02 |██████████████▏ | 5.1 MB 5.2 MB/s eta 0:00:02 |██████████████▋ | 5.3 MB 5.2 MB/s eta 0:00:02 |████████████████████████▏ | 8.7 MB 2.1 MB/s eta 0:00:02 |████████████████████████████ | 10.1 MB 2.1 MB/s eta 0:00:01\n",
|
|
|
|
|
"\u001b[?25hCollecting cycler>=0.10\n",
|
|
|
|
|
" Downloading cycler-0.10.0-py2.py3-none-any.whl (6.5 kB)\n",
|
|
|
|
|
"Requirement already satisfied: python-dateutil>=2.1 in /usr/lib/python3/dist-packages (from matplotlib) (2.7.3)\n",
|
|
|
|
|
"Collecting kiwisolver>=1.0.1\n",
|
|
|
|
|
" Downloading kiwisolver-1.3.1-cp38-cp38-manylinux1_x86_64.whl (1.2 MB)\n",
|
|
|
|
|
"\u001b[K |████████████████████████████████| 1.2 MB 9.9 MB/s eta 0:00:01\n",
|
|
|
|
|
"\u001b[?25hRequirement already satisfied: pillow>=6.2.0 in /usr/lib/python3/dist-packages (from matplotlib) (7.0.0)\n",
|
|
|
|
|
"Requirement already satisfied: numpy>=1.15 in /home/maciej/.local/lib/python3.8/site-packages (from matplotlib) (1.20.1)\n",
|
|
|
|
|
"Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.3 in /home/maciej/.local/lib/python3.8/site-packages (from matplotlib) (2.4.7)\n",
|
|
|
|
|
"Requirement already satisfied: six in /usr/lib/python3/dist-packages (from cycler>=0.10->matplotlib) (1.14.0)\n",
|
|
|
|
|
"Installing collected packages: cycler, kiwisolver, matplotlib\n",
|
|
|
|
|
"Successfully installed cycler-0.10.0 kiwisolver-1.3.1 matplotlib-3.3.4\n"
|
|
|
|
|
]
|
|
|
|
|
}
|
|
|
|
|
],
|
|
|
|
|
"source": [
|
|
|
|
|
"import sys\n",
|
|
|
|
|
"!{sys.executable} -m pip install kaggle\n",
|
|
|
|
|
"!{sys.executable} -m pip install pandas\n",
|
|
|
|
|
"!{sys.executable} -m pip install sklearn\n",
|
|
|
|
|
"!{sys.executable} -m pip install matplotlib"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
|
|
|
|
"execution_count": 5,
|
|
|
|
|
"id": "sharp-september",
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [
|
|
|
|
|
{
|
|
|
|
|
"name": "stdout",
|
|
|
|
|
"output_type": "stream",
|
|
|
|
|
"text": [
|
|
|
|
|
"Downloading who-suicide-statistics.zip to /home/maciej/Desktop/INZ/ium_434784\r\n",
|
|
|
|
|
"\r",
|
|
|
|
|
" 0%| | 0.00/304k [00:00<?, ?B/s]\r\n",
|
|
|
|
|
"\r",
|
|
|
|
|
"100%|████████████████████████████████████████| 304k/304k [00:00<00:00, 17.9MB/s]\r\n"
|
|
|
|
|
]
|
|
|
|
|
}
|
|
|
|
|
],
|
|
|
|
|
"source": [
|
|
|
|
|
"# Zadanie 1\n",
|
|
|
|
|
"!kaggle datasets download -d szamil/who-suicide-statistics"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
|
|
|
|
"execution_count": 6,
|
|
|
|
|
"id": "different-stack",
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [
|
|
|
|
|
{
|
|
|
|
|
"data": {
|
|
|
|
|
"text/html": [
|
|
|
|
|
"<div>\n",
|
|
|
|
|
"<style scoped>\n",
|
|
|
|
|
" .dataframe tbody tr th:only-of-type {\n",
|
|
|
|
|
" vertical-align: middle;\n",
|
|
|
|
|
" }\n",
|
|
|
|
|
"\n",
|
|
|
|
|
" .dataframe tbody tr th {\n",
|
|
|
|
|
" vertical-align: top;\n",
|
|
|
|
|
" }\n",
|
|
|
|
|
"\n",
|
|
|
|
|
" .dataframe thead th {\n",
|
|
|
|
|
" text-align: right;\n",
|
|
|
|
|
" }\n",
|
|
|
|
|
"</style>\n",
|
|
|
|
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|
|
|
|
" <thead>\n",
|
|
|
|
|
" <tr style=\"text-align: right;\">\n",
|
|
|
|
|
" <th></th>\n",
|
|
|
|
|
" <th>country</th>\n",
|
|
|
|
|
" <th>year</th>\n",
|
|
|
|
|
" <th>sex</th>\n",
|
|
|
|
|
" <th>age</th>\n",
|
|
|
|
|
" <th>suicides_no</th>\n",
|
|
|
|
|
" <th>population</th>\n",
|
|
|
|
|
" </tr>\n",
|
|
|
|
|
" </thead>\n",
|
|
|
|
|
" <tbody>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>0</th>\n",
|
|
|
|
|
" <td>Albania</td>\n",
|
|
|
|
|
" <td>1985</td>\n",
|
|
|
|
|
" <td>female</td>\n",
|
|
|
|
|
" <td>15-24 years</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>277900.0</td>\n",
|
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>1</th>\n",
|
|
|
|
|
" <td>Albania</td>\n",
|
|
|
|
|
" <td>1985</td>\n",
|
|
|
|
|
" <td>female</td>\n",
|
|
|
|
|
" <td>25-34 years</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>246800.0</td>\n",
|
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>2</th>\n",
|
|
|
|
|
" <td>Albania</td>\n",
|
|
|
|
|
" <td>1985</td>\n",
|
|
|
|
|
" <td>female</td>\n",
|
|
|
|
|
" <td>35-54 years</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>267500.0</td>\n",
|
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>3</th>\n",
|
|
|
|
|
" <td>Albania</td>\n",
|
|
|
|
|
" <td>1985</td>\n",
|
|
|
|
|
" <td>female</td>\n",
|
|
|
|
|
" <td>5-14 years</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>298300.0</td>\n",
|
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>4</th>\n",
|
|
|
|
|
" <td>Albania</td>\n",
|
|
|
|
|
" <td>1985</td>\n",
|
|
|
|
|
" <td>female</td>\n",
|
|
|
|
|
" <td>55-74 years</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>138700.0</td>\n",
|
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>...</th>\n",
|
|
|
|
|
" <td>...</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>43771</th>\n",
|
|
|
|
|
" <td>Zimbabwe</td>\n",
|
|
|
|
|
" <td>1990</td>\n",
|
|
|
|
|
" <td>male</td>\n",
|
|
|
|
|
" <td>25-34 years</td>\n",
|
|
|
|
|
" <td>150.0</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>43772</th>\n",
|
|
|
|
|
" <td>Zimbabwe</td>\n",
|
|
|
|
|
" <td>1990</td>\n",
|
|
|
|
|
" <td>male</td>\n",
|
|
|
|
|
" <td>35-54 years</td>\n",
|
|
|
|
|
" <td>132.0</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>43773</th>\n",
|
|
|
|
|
" <td>Zimbabwe</td>\n",
|
|
|
|
|
" <td>1990</td>\n",
|
|
|
|
|
" <td>male</td>\n",
|
|
|
|
|
" <td>5-14 years</td>\n",
|
|
|
|
|
" <td>6.0</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>43774</th>\n",
|
|
|
|
|
" <td>Zimbabwe</td>\n",
|
|
|
|
|
" <td>1990</td>\n",
|
|
|
|
|
" <td>male</td>\n",
|
|
|
|
|
" <td>55-74 years</td>\n",
|
|
|
|
|
" <td>74.0</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>43775</th>\n",
|
|
|
|
|
" <td>Zimbabwe</td>\n",
|
|
|
|
|
" <td>1990</td>\n",
|
|
|
|
|
" <td>male</td>\n",
|
|
|
|
|
" <td>75+ years</td>\n",
|
|
|
|
|
" <td>13.0</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" </tr>\n",
|
|
|
|
|
" </tbody>\n",
|
|
|
|
|
"</table>\n",
|
|
|
|
|
"<p>43776 rows × 6 columns</p>\n",
|
|
|
|
|
"</div>"
|
|
|
|
|
],
|
|
|
|
|
"text/plain": [
|
|
|
|
|
" country year sex age suicides_no population\n",
|
|
|
|
|
"0 Albania 1985 female 15-24 years NaN 277900.0\n",
|
|
|
|
|
"1 Albania 1985 female 25-34 years NaN 246800.0\n",
|
|
|
|
|
"2 Albania 1985 female 35-54 years NaN 267500.0\n",
|
|
|
|
|
"3 Albania 1985 female 5-14 years NaN 298300.0\n",
|
|
|
|
|
"4 Albania 1985 female 55-74 years NaN 138700.0\n",
|
|
|
|
|
"... ... ... ... ... ... ...\n",
|
|
|
|
|
"43771 Zimbabwe 1990 male 25-34 years 150.0 NaN\n",
|
|
|
|
|
"43772 Zimbabwe 1990 male 35-54 years 132.0 NaN\n",
|
|
|
|
|
"43773 Zimbabwe 1990 male 5-14 years 6.0 NaN\n",
|
|
|
|
|
"43774 Zimbabwe 1990 male 55-74 years 74.0 NaN\n",
|
|
|
|
|
"43775 Zimbabwe 1990 male 75+ years 13.0 NaN\n",
|
|
|
|
|
"\n",
|
|
|
|
|
"[43776 rows x 6 columns]"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
"execution_count": 6,
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"output_type": "execute_result"
|
|
|
|
|
}
|
|
|
|
|
],
|
|
|
|
|
"source": [
|
|
|
|
|
"import pandas as pd\n",
|
|
|
|
|
"sc = pd.read_csv('who_suicide_statistics.csv')\n",
|
|
|
|
|
"sc"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
|
|
|
|
"execution_count": 92,
|
|
|
|
|
"id": "sonic-reduction",
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [],
|
|
|
|
|
"source": [
|
|
|
|
|
"# Zadanie 2\n",
|
|
|
|
|
"# Podzial na 3 podzbiory w proporcji 6:2:2\n",
|
|
|
|
|
"import numpy as np\n",
|
|
|
|
|
"train, validate, test = np.split(sc.sample(frac=1, random_state=42),\n",
|
|
|
|
|
" [int(.6*len(sc)), int(.8*len(sc))])\n"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
|
|
|
|
"execution_count": 76,
|
|
|
|
|
"id": "nuclear-bandwidth",
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [
|
|
|
|
|
{
|
|
|
|
|
"name": "stdout",
|
|
|
|
|
"output_type": "stream",
|
|
|
|
|
"text": [
|
|
|
|
|
"Train set: 157590\n",
|
|
|
|
|
"Validate set: 52530\n",
|
|
|
|
|
"Test set: 52536\n",
|
|
|
|
|
" country year sex age \\\n",
|
|
|
|
|
"count 26265 26265.000000 26265 26265 \n",
|
|
|
|
|
"unique 141 NaN 2 6 \n",
|
|
|
|
|
"top United States of America NaN female 55-74 years \n",
|
|
|
|
|
"freq 298 NaN 13170 4420 \n",
|
|
|
|
|
"mean NaN 1998.562688 NaN NaN \n",
|
|
|
|
|
"std NaN 10.310004 NaN NaN \n",
|
|
|
|
|
"min NaN 1979.000000 NaN NaN \n",
|
|
|
|
|
"25% NaN 1990.000000 NaN NaN \n",
|
|
|
|
|
"50% NaN 1999.000000 NaN NaN \n",
|
|
|
|
|
"75% NaN 2007.000000 NaN NaN \n",
|
|
|
|
|
"max NaN 2016.000000 NaN NaN \n",
|
|
|
|
|
"\n",
|
|
|
|
|
" suicides_no population \n",
|
|
|
|
|
"count 24919.000000 2.298300e+04 \n",
|
|
|
|
|
"unique NaN NaN \n",
|
|
|
|
|
"top NaN NaN \n",
|
|
|
|
|
"freq NaN NaN \n",
|
|
|
|
|
"mean 194.504113 1.684849e+06 \n",
|
|
|
|
|
"std 789.159429 3.667651e+06 \n",
|
|
|
|
|
"min 0.000000 2.780000e+02 \n",
|
|
|
|
|
"25% 1.000000 8.678000e+04 \n",
|
|
|
|
|
"50% 14.000000 3.861960e+05 \n",
|
|
|
|
|
"75% 93.000000 1.333594e+06 \n",
|
|
|
|
|
"max 22338.000000 4.380521e+07 \n",
|
|
|
|
|
"United States of America 298\n",
|
|
|
|
|
"Sweden 292\n",
|
|
|
|
|
"Romania 292\n",
|
|
|
|
|
"Hungary 289\n",
|
|
|
|
|
"Iceland 283\n",
|
|
|
|
|
" ... \n",
|
|
|
|
|
"Cabo Verde 10\n",
|
|
|
|
|
"Iraq 9\n",
|
|
|
|
|
"Monaco 9\n",
|
|
|
|
|
"Macau 8\n",
|
|
|
|
|
"Zimbabwe 6\n",
|
|
|
|
|
"Name: country, Length: 141, dtype: int64\n"
|
|
|
|
|
]
|
|
|
|
|
}
|
|
|
|
|
],
|
|
|
|
|
"source": [
|
|
|
|
|
"# Zadanie 3\n",
|
|
|
|
|
"import matplotlib.pyplot as plt\n",
|
|
|
|
|
"print(\"Train set: \", train.size)\n",
|
|
|
|
|
"print(\"Validate set: \", validate.size)\n",
|
|
|
|
|
"print(\"Test set: \", test.size)\n",
|
|
|
|
|
"print(train.describe(include='all'))\n",
|
|
|
|
|
"print(train.country.value_counts())"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
|
|
|
|
"execution_count": 77,
|
|
|
|
|
"id": "thermal-proposal",
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [
|
|
|
|
|
{
|
|
|
|
|
"name": "stdout",
|
|
|
|
|
"output_type": "stream",
|
|
|
|
|
"text": [
|
|
|
|
|
" country year sex age suicides_no population\n",
|
|
|
|
|
"count 8755 8755.000000 8755 8755 8299.000000 7.707000e+03\n",
|
|
|
|
|
"unique 141 NaN 2 6 NaN NaN\n",
|
|
|
|
|
"top Mauritius NaN male 5-14 years NaN NaN\n",
|
|
|
|
|
"freq 108 NaN 4461 1506 NaN NaN\n",
|
|
|
|
|
"mean NaN 1998.390520 NaN NaN 197.230389 1.640237e+06\n",
|
|
|
|
|
"std NaN 10.441815 NaN NaN 880.620233 3.628585e+06\n",
|
|
|
|
|
"min NaN 1979.000000 NaN NaN 0.000000 2.590000e+02\n",
|
|
|
|
|
"25% NaN 1989.000000 NaN NaN 1.000000 8.303000e+04\n",
|
|
|
|
|
"50% NaN 1999.000000 NaN NaN 13.000000 3.798980e+05\n",
|
|
|
|
|
"75% NaN 2007.500000 NaN NaN 90.000000 1.307090e+06\n",
|
|
|
|
|
"max NaN 2016.000000 NaN NaN 21706.000000 4.324090e+07\n",
|
|
|
|
|
"Mauritius 108\n",
|
|
|
|
|
"Hong Kong SAR 106\n",
|
|
|
|
|
"United Kingdom 106\n",
|
|
|
|
|
"Russian Federation 103\n",
|
|
|
|
|
"Belgium 103\n",
|
|
|
|
|
" ... \n",
|
|
|
|
|
"Tunisia 3\n",
|
|
|
|
|
"Iran (Islamic Rep of) 3\n",
|
|
|
|
|
"Macau 2\n",
|
|
|
|
|
"Iraq 2\n",
|
|
|
|
|
"Cabo Verde 1\n",
|
|
|
|
|
"Name: country, Length: 141, dtype: int64\n"
|
|
|
|
|
]
|
|
|
|
|
}
|
|
|
|
|
],
|
|
|
|
|
"source": [
|
|
|
|
|
"# Zadanie 3\n",
|
|
|
|
|
"print(validate.describe(include='all'))\n",
|
|
|
|
|
"print(validate.country.value_counts())"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
|
|
|
|
"execution_count": 78,
|
|
|
|
|
"id": "average-climb",
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [
|
|
|
|
|
{
|
|
|
|
|
"name": "stdout",
|
|
|
|
|
"output_type": "stream",
|
|
|
|
|
"text": [
|
|
|
|
|
" country year sex age suicides_no population\n",
|
|
|
|
|
"count 8756 8756.000000 8756 8756 8302.000000 7.626000e+03\n",
|
|
|
|
|
"unique 141 NaN 2 6 NaN NaN\n",
|
|
|
|
|
"top Lithuania NaN female 75+ years NaN NaN\n",
|
|
|
|
|
"freq 102 NaN 4424 1501 NaN NaN\n",
|
|
|
|
|
"mean NaN 1998.433760 NaN NaN 185.833775 1.625640e+06\n",
|
|
|
|
|
"std NaN 10.320908 NaN NaN 749.047182 3.604071e+06\n",
|
|
|
|
|
"min NaN 1979.000000 NaN NaN 0.000000 2.790000e+02\n",
|
|
|
|
|
"25% NaN 1990.000000 NaN NaN 1.000000 8.113700e+04\n",
|
|
|
|
|
"50% NaN 1999.000000 NaN NaN 13.000000 3.660465e+05\n",
|
|
|
|
|
"75% NaN 2007.000000 NaN NaN 87.000000 1.241382e+06\n",
|
|
|
|
|
"max NaN 2016.000000 NaN NaN 17355.000000 4.299788e+07\n",
|
|
|
|
|
"Lithuania 102\n",
|
|
|
|
|
"Denmark 102\n",
|
|
|
|
|
"Israel 100\n",
|
|
|
|
|
"Luxembourg 100\n",
|
|
|
|
|
"Ireland 99\n",
|
|
|
|
|
" ... \n",
|
|
|
|
|
"Saudi Arabia 3\n",
|
|
|
|
|
"Zimbabwe 2\n",
|
|
|
|
|
"Macau 2\n",
|
|
|
|
|
"Cabo Verde 1\n",
|
|
|
|
|
"Iraq 1\n",
|
|
|
|
|
"Name: country, Length: 141, dtype: int64\n"
|
|
|
|
|
]
|
|
|
|
|
}
|
|
|
|
|
],
|
|
|
|
|
"source": [
|
|
|
|
|
"# Zadanie 3\n",
|
|
|
|
|
"print(test.describe(include='all'))\n",
|
|
|
|
|
"print(test.country.value_counts())"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
|
|
|
|
"execution_count": 79,
|
|
|
|
|
"id": "comparable-company",
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [
|
|
|
|
|
{
|
|
|
|
|
"data": {
|
|
|
|
|
"text/plain": [
|
|
|
|
|
"<AxesSubplot:>"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
"execution_count": 79,
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"output_type": "execute_result"
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"data": {
|
|
|
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAlkAAAHQCAYAAACSr3/KAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAADr+klEQVR4nOydd7geRfXHPyeFBEKHgPSA9N47hqLSpIN0sCAgSBEbitJEQFEQUFSkSFOK9CqIodf00AlJ6CVAIIWacH5/fM9k933ve5Mb4P4S4HyeZ597d9/d2dkpZ86cOTNj7k6SJEmSJEny6dJlekcgSZIkSZLk80gqWUmSJEmSJJ1AKllJkiRJkiSdQCpZSZIkSZIknUAqWUmSJEmSJJ1AKllJkiRJkiSdQLfpHQGAeeed1/v06TO9o5EkSZIkSTJVBgwY8Lq7957afTOEktWnTx/69+8/vaORJEmSJEkyVczs2Y7cl8OFSZIkSZIknUAqWUmSJEmSJJ1AKllJkiRJkiSdQCpZSZIkSZIknUAqWUmSJEmSJJ3AVJUsM+tpZg+Z2RAze9TMjovri5vZg2Y23MwuM7OZ4nqPOB8ev/fp5G9IkiRJkiSZ4eiIJet9YFN3XwVYFdjCzNYFfguc5u5LAmOA78b93wXGxPXT4r4kSZIkSZIvFFNVslyMj9PucTiwKfDvuH4BsH38v12cE79vZmb2aUU4SZIkSZLks0CHfLLMrKuZDQZeA24DngHecveJccsLwELx/0LA8wDx+9vAPJ9inJMkSZIkSWZ4OqRkufskd18VWBhYG1j2k77YzPY3s/5m1n/06NGfNLgkSZIkSZIZimmaXejubwH9gPWAOc2sbMuzMPBi/P8isAhA/D4H8EaLsM529zXdfc3evae6/U+SJEmSJMlnio7MLuxtZnPG/zMDXwMeR8rWznHbvsC18f91cU78/j9396m9p8+RN9LnyBunKfJJkiRJkiQzKh3ZIHoB4AIz64qUssvd/QYzewy41MxOAAYB58b95wIXmdlw4E1gt06Id5IkSZIkyQzNVJUsdx8KrNbi+gjkn9V8/T1gl08ldkmSJEmSJJ9RcsX3JEmSJEmSTiCVrCRJkiRJkk5ghlWymh3h0zE+SZIkSZLPEjOskpUkSZIkSfJZJpWsJEmSJEmSTuAzq2Tl8GGSJEmSJDMyn1klK0mSJEmSZEYmlawkSZIkSZJOIJWsJEmSJEmSTiCVrCRJkiRJkk7gc6NkpSN8kiRJkiQzEp8bJauZVLqSJEmSJJmefG6VrCRJkiRJkulJKllJkiRJkiSdwBdGyZraXog5vJgkSZIkyafJF0bJmlZS6UqSJEmS5JOQSlYHSaUrSZIkSZJpIZWsj0kONyZJkiRJMiVSyUqSJEmSJOkEUslKkiRJkiTpBFLJ6iRyNmOSJEmSfLFJJWsGIRWwJEmSJPl8kUpWkiRJkiRJJ5BKVpIkSZIkSSeQStZngPTnSpIkSZLPHqlkfQ5IpStJkiRJZjxSyfockpavJEmSJJn+pJL1BWRal5dIpS1JkiRJpp1UspJPTCpdSZIkSdKWVLKST520fCVJkiRJKlnJdCCVriRJkuSLQCpZyXQnla4kSZLk80gqWckMRypdSZIkyeeBVLKSGZ5UupIkSZLPIqlkJZ850rE+SZIk+SwwVSXLzBYxs35m9piZPWpmh8X1Y83sRTMbHMdWtWd+bmbDzexJM9u8Mz8gSZrJdb6SJEmSGYFuHbhnIvAjdx9oZrMBA8zstvjtNHf/ff1mM1se2A1YAVgQ+K+ZLe3ukz7NiCfJp0FRtkadvHWHzpMkSZKko0zVkuXuL7v7wPh/HPA4sNAUHtkOuNTd33f3kcBwYO1PI7JJkiRJkiSfFabJJ8vM+gCrAQ/GpR+Y2VAzO8/M5oprCwHP1x57gSkrZUmSJEmSJJ87OqxkmdmswJXA4e4+FvgL8GVgVeBl4A/T8mIz29/M+ptZ/9GjR0/Lo0ky3Uh/riRJkqSjdEjJMrPuSMG6xN2vAnD3V919krt/BPydakjwRWCR2uMLx7UG3P1sd1/T3dfs3bv3J/mGJEmSJEmSGY6OzC404FzgcXc/tXZ9gdptOwCPxP/XAbuZWQ8zWxxYCnjo04tyksw4pGUrSZIkaY+OzC7cANgbGGZmg+PaL4DdzWxVwIFRwAEA7v6omV0OPIZmJh6cMwuTLwo5GzFJkiQpTFXJcvd7AGvx001TeOY3wG8+QbyS5HNBKl1JkiRfXHLF9yT5fyQXRk2SJPnikEpWksxApBKWJEny+SGVrCRJkiRJkk4glawk+QwxrfsypiUsSZJk+pFKVpJ8gUilLEmS5P+PVLKSJEmSJEk6gVSykiRpl7RsJUmSfHxSyUqSpMOk0pUkSdJxUslKkiRJkiTpBFLJSpLkY5OWrSRJkvZJJStJkk+NVLqSJEkqUslKkqTTSKUrSZIvMqlkJUny/0YupJokyReJVLKSJEmSJEk6gVSykiRJkiRJOoFUspIk+UyQw4tJknzWSCUrSZLPJamEJUkyvUklK0mSJEmSpBNIJStJkiRJkqQTSCUrSZIkSZKkE0glK0mSJEmSpBNIJStJki8k6QifJElnk0pWkiRJkiRJJ5BKVpIkCWnZSpLk0yeVrCRJkhbkOltJknxSUslKkiRJkiTpBFLJSpIk+RikZStJkqmRSlaSJMmnQCpdSZI0k0pWkiRJJ5BKV5IkqWQlSZIkSZJ0AqlkJUmSJEmSdAKpZCVJkiRJknQCqWQlSZIkSZJ0AqlkJUmSJEmSdAJTVbLMbBEz62dmj5nZo2Z2WFyf28xuM7On4+9ccd3M7AwzG25mQ81s9c7+iCRJkhmdnG2YJF88OmLJmgj8yN2XB9YFDjaz5YEjgdvdfSng9jgH2BJYKo79gb986rFOkiT5jJNKV5J8/pmqkuXuL7v7wPh/HPA4sBCwHXBB3HYBsH38vx1woYsHgDnNbIFPO+JJkiSfJ1LpSpLPH9Pkk2VmfYDVgAeB+d395fjpFWD++H8h4PnaYy/EtSRJkiRJki8MHVayzGxW4ErgcHcfW//N3R3waXmxme1vZv3NrP/o0aOn5dEkSZIkSZIZng4pWWbWHSlYl7j7VXH51TIMGH9fi+svAovUHl84rjXg7me7+5ruvmbv3r0/bvyTJEk+l+TwYZJ89unI7EIDzgUed/dTaz9dB+wb/+8LXFu7vk/MMlwXeLs2rJgkSZJ8DJqVrlTCkmTGp1sH7tkA2BsYZmaD49ovgJOBy83su8CzwDfjt5uArYDhwDvAtz/NCCdJkiRJknwWmKqS5e73ANbOz5u1uN+Bgz9hvJIkSZIkST7T5IrvSZIkSZIknUAqWUmSJEmSJJ1AKllJkiRJkiSdQCpZSZIkSZIknUAqWUmSJEmSJJ1AKllJkiSfA3LdrCSZ8UglK0mS5HNIKl1JMv1JJStJkuRzTipcSTJ9SCUrSZIkSZKkE0glK0mSJEmSpBNIJStJkiRJkqQTSCUrSZIkSZKkE0glK0mSJEmSpBNIJStJkuQLRvNsw6mdJ0ny8UglK0mSJEmSpBNIJStJkiSZImnZSpKPRypZSZIkSZIknUAqWUmSJEmSJJ1AKllJkiRJkiSdQCpZSZIkSZIknUAqWUmSJMk0kY7wSdIxUslKkiRJkiTpBFLJSpIkSZIk6QRSyUqSJEmSJOkEUslKkiRJkiTpBFLJSpIkSZIk6QRSyUqSJEmSJOkEUslKkiRJkiTpBFLJSpIkSZIk6QRSyUqSJEmSJOkEUslKkiRJkiTpBFLJSpIkSZIk6QRSyUqSJEmSJOkEUslKkiRJkiTpBFLJSpIkSZIk6QSmqmSZ2Xlm9pqZPVK7dqyZvWhmg+PYqvbbz81suJk9aWabd1bEkyRJkiRJZmQ6Ysn6B7BFi+unufuqcdwEYGbLA7sBK8QzZ5lZ108rskmSJMmMR58jb6TPkTdO72gkyQzHVJUsd78LeLOD4W0HXOru77v7SGA4sPYniF+SJEmSJMlnkk/ik/UDMxsaw4lzxbWFgOdr97wQ15IkSZIvCM2WrbR0JV9UPq6S9Rfgy8CqwMvAH6Y
|
|
|
|
|
"text/plain": [
|
|
|
|
|
"<Figure size 720x360 with 1 Axes>"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
"metadata": {
|
|
|
|
|
"needs_background": "light"
|
|
|
|
|
},
|
|
|
|
|
"output_type": "display_data"
|
|
|
|
|
}
|
|
|
|
|
],
|
|
|
|
|
"source": [
|
|
|
|
|
"pd.value_counts(train['country']).plot.bar()"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
|
|
|
|
"execution_count": 80,
|
|
|
|
|
"id": "numerous-truck",
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [
|
|
|
|
|
{
|
|
|
|
|
"data": {
|
|
|
|
|
"text/plain": [
|
|
|
|
|
"<AxesSubplot:>"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
"execution_count": 80,
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"output_type": "execute_result"
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"data": {
|
|
|
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAlkAAAHQCAYAAACSr3/KAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAADo10lEQVR4nOydefydw/XH35NFNiJC7CR2VbUEtVZsVVpVa+0UpX6tViktbVG6UF1sRWmJfd/3LWJfs0mQIBL7FlskEZHI+f3xOZNn7v3ebxKSWwnn/Xo9r3ufe59nnnlmOXPmzJmZZGYEQRAEQRAEs5c2X3QEgiAIgiAIvoyEkhUEQRAEQdAEQskKgiAIgiBoAqFkBUEQBEEQNIFQsoIgCIIgCJpAKFlBEARBEARNoN0XHQGAhRZayHr16vVFRyMIgiAIgmCGDBw48B0z6zGj6+YIJatXr14MGDDgi45GEARBEATBDEkpvTQz18VwYRAEQRAEQRMIJSsIgiAIgqAJhJIVBEEQBEHQBELJCoIgCIIgaAKhZAVBEARBEDSBULKCIAiCIAiaQChZQRAEQRAETSCUrCAIgiAIgiYQSlYQBEEQBEETCCUrCIIgCIKgCYSSFQRBEARB0ATmGCWr15G30OvIW77oaARBEARBEMwW5hglKwiCIAiC4MtEKFlBEARBEARNIJSsIAiCIAiCJhBKVhAEQRAEQROYY5Wsekf4cIwPgiAIgmBuYo5VsoIgCIIgCOZmQskKgiAIgiBoAqFkBUEQBEEQNIFQsoIgCIIgCJpAKFlBEARBEARNIJSsIAiCIAiCJjDXKlmxxEMQBEEQBHMyc62SFQRBEARBMCcTSlYQBEEQBEETmKGSlVI6L6X0dkrpqeK37imlu1JKz/vnAv57SimdllIamVIamlLq3czIB0EQBEEQzKnMjCXrfGCrut+OBPqZ2QpAPz8H2BpYwY8DgbNmTzSDIAiCIAjmLmaoZJnZ/cB7dT//ALjAv18AbFf8fqGJR4FuKaXFZlNcPxPhCB8EQRAEwRfJ5/XJWsTM3vDvbwKL+PclgFeK617134IgCIIgCL5SzLLju5kZYJ/1vpTSgSmlASmlAWPGjJnVaMyQWPIhCIIgCIL/JZ9XyXorDwP659v++2vAUsV1S/pvLTCzc8xsbTNbu0ePHp8zGkEQBEEQBHMmn1fJuhHYx7/vA9xQ/L63zzJcDxhbDCsGQRAEQRB8ZWg3owtSSpcBmwALpZReBY4FTgSuTCntD7wE/NAvvxX4LjAS+AjYtwlxbgp56PDFE7/3BcckCIIgCIIvAzNUssxst1b+2rzBtQb8bFYjFQRBEARBMLcTK763QjjGB0EQBEEwK4SSFQRBEARB0ARCyZpJYgmIIAiCIAg+C6FkBUEQBEEQNIFQsoIgCIIgCJpAKFmziRg+DIIgCIKgJJSsIAiCIAiCJhBKVpMIq1YQBEEQfLUJJSsIgiAIgqAJhJIVBEEQBEHQBELJ+h8Qa2wFQRAEwVePULKCIAiCIAiaQChZcwBh6QqCIAiCLx+hZAVBEARBEDSBULLmAsLSFQRBEARzH6FkBUEQBEEQNIFQsoIgCIIgCJpAKFlfAmY0nBjDi0EQBEHwvyeUrCAIgiAIgiYQStZXkLBsBUEQBEHzCSUrCIIgCIKgCYSSFQRBEARB0ARCyQrCUT4IgiAImkAoWUEQBEEQBE0glKxghnzWJSLCEhYEQRAEoWQFQRAEQRA0hVCygqYTlq8gCILgq0goWUEQBEEQBE0glKwgCIIgCIImEEpWMMcRw4lBEATBl4FQsoIgCIIgCJpAKFnBXEdYuoIgCIK5gVCygiAIgiAImkAoWUEQBEEQBE0glKzgS0WsTh8EQRDMKYSSFQRBEARB0ARCyQqCgrB8BUEQBLOLULKCIAiCIAiaQChZQTALhOUrCIIgaI1ZUrJSSoemlJ5OKT2VUrospdQxpbRMSumxlNLIlNIVKaV5ZldkgyAIgiAI5hY+t5KVUloC+AWwtpmtCrQFdgX+CpxsZssD7wP7z46IBkEQBEEQzE3M6nBhO6BTSqkd0Bl4A9gMuNr/vwDYbhafEQRfGmJ4MQiC4KvD51ayzOw14O/Ay0i5GgsMBD4wsyl+2avAErMaySAIgiAIgrmNWRkuXAD4AbAMsDjQBdjqM9x/YEppQEppwJgxYz5vNILgS01YtoIgCOZeZmW4cAtgtJmNMbPJwLXAhkA3Hz4EWBJ4rdHNZnaOma1tZmv36NFjFqIRBEEQBEEw5zErStbLwHoppc4ppQRsDjwD9Ad28mv2AW6YtSgGQRAEQRDMfcyKT9ZjyMF9EDDMwzoH+A1wWEppJLAgcO5siGcQBEEQBMFcRbsZX9I6ZnYscGzdz6OAb85KuEEQBEEQBHM7seJ7EMxFhCN8EATB3EMoWUEQBEEQBE0glKwgmIv5rIubxuKnQRAE/ztCyQqCIAiCIGgCoWQFQRAEQRA0gVCygiCYRgwnBkEQzD5CyQqCIAiCIGgCoWQFQTDTNLJ0BUEQBI0JJSsIgiAIgqAJhJIVBEEQBEHQBELJCoJgthBrdAVBENQSSlYQBEEQBEETCCUrCII5grBsBUHwZSOUrCAIgiAIgiYQSlYQBHMkYdkKgmBuJ5SsIAiCIAiCJhBKVhAEQRAEQRMIJSsIgrmCWBIiCIK5jVCygiAIgiAImkAoWUEQfCmJxVGDIPiiCSUrCIIgCIKgCYSSFQRBEARB0ARCyQqCIGhADCcGQTCrhJIVBEEQBEHQBELJCoIg+ByEZSsIghkRSlYQBEEQBEETCCUrCIJgNhCWrSAI6gklKwiCIAiCoAmEkhUEQRAEQdAEQskKgiBoAjF8GARBKFlBEARBEARNIJSsIAiC/wGxd2IQfPUIJSsIgiAIgqAJhJIVBEEQBEHQBELJCoIgmAOJ4cQgmPsJJSsIgiAIgqAJhJIVBEEQBEHQBELJCoIgCIIgaAKhZAVBEMxlhL9WEMwdzJKSlVLqllK6OqU0IqU0PKW0fkqpe0rprpTS8/65wOyKbBAEQRAEwdzCrFqyTgVuN7OVgdWB4cCRQD8zWwHo5+dBEARBEARfKT63kpVSmh/YGDgXwMw+MbMPgB8AF/hlFwDbzVoUgyAIgiAI5j5mxZK1DDAG6JtSGpxS+m9KqQuwiJm94de8CSwyq5EMgiAIgiCY25gVJasd0Bs4y8zWBCZQNzRoZgZYo5tTSgemlAaklAaMGTNmFqIRBEEQlMQ+iUEwZzArStarwKtm9pifX42UrrdSSosB+OfbjW42s3PMbG0zW7tHjx6zEI0gCIIgCII5j8+tZJnZm8ArKaWV/KfNgWeAG4F9/Ld9gBtmKYZBEARBEARzIe1m8f6fA5eklOYBRgH7IsXtypTS/sBLwA9n8RlBEARBEARzHbOkZJnZEGDtBn9tPivhBkEQBEEQzO3Eiu9BEARBEARNIJSsIAiCIAiCJhBKVhAEwVecWOIhCJpDKFlBEARBEARNIJSsIAiCIAiCJhBKVhAEQRAEQRMIJSsIgiAIgqAJhJIVBEEQTJdwjA+Cz0coWUEQBEEQBE0glKwgCIJglpiRpSssX8FXlVCygiAIgiAImkAoWUEQBEEQBE0glKwgCILgf0oMHwZfFULJCoIgCIIgaAKhZAVBEARBEDSBULKCIAiCIAiaQChZQRAEQRAETSCUrCAIgiAIgiYQSlYQBEEQBEETCCUrCIIgCIKgCYSSFQRBEARB0ARCyQqCIAiCIGgCoWQFQRAEQRA0gVCygiAIgiAImkAoWUEQBEEQBE0glKwgCIIgCIImEEpWEARB8IXS68hb6HXkLV90NIJgthNKVhAEQRAEQRMIJSsIgiAIgqAJhJIVBEEQzFHE8GHwZSGUrCAIgiAIgiYQSlYQBEEQBEETCCUrCIIgCIKgCYSSFQRBEMzR1Ptohc9WMLcQSlYQBEEQBEETCCUrCIIgCIKgCYSSFQRBEARB0ARCyQqCIAiCIGgCoWQFQRAEQRA0gVlWslJKbVNKg1NKN/v5Mimlx1JKI1NKV6SU5pn1aAZBEARBEMxdzA5L1iHA8OL8r8DJZrY
|
|
|
|
|
"text/plain": [
|
|
|
|
|
"<Figure size 720x360 with 1 Axes>"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
"metadata": {
|
|
|
|
|
"needs_background": "light"
|
|
|
|
|
},
|
|
|
|
|
"output_type": "display_data"
|
|
|
|
|
}
|
|
|
|
|
],
|
|
|
|
|
"source": [
|
|
|
|
|
"pd.value_counts(validate['country']).plot.bar()"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
|
|
|
|
"execution_count": 81,
|
|
|
|
|
"id": "tamil-democrat",
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [
|
|
|
|
|
{
|
|
|
|
|
"data": {
|
|
|
|
|
"text/plain": [
|
|
|
|
|
"<AxesSubplot:>"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
"execution_count": 81,
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"output_type": "execute_result"
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"data": {
|
|
|
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAlkAAAHQCAYAAACSr3/KAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAADpQklEQVR4nOydd/zf0/XHnzdLJBISYpPYo2bsPauUovaqWaNVVbSo/hSl6DLbUiulNWqPoigxYku+GYgRkdgSBEkIIuf3x+vcvO/nk883iSSfCs7z8fg8Pus97vuOc88599x7k5kRBEEQBEEQzFrafNkJCIIgCIIg+DoSSlYQBEEQBEETCCUrCIIgCIKgCYSSFQRBEARB0ARCyQqCIAiCIGgCoWQFQRAEQRA0gXZfdgIA5ptvPuvVq9eXnYwgCIIgCIJp0r9//3fMrMe0jpstlKxevXrx1FNPfdnJCIIgCIIgmCYppZHTc1wMFwZBEARBEDSBULKCIAiCIAiaQChZQRAEQRAETSCUrCAIgiAIgiYQSlYQBEEQBEETCCUrCIIgCIKgCYSSFQRBEARB0ARCyQqCIAiCIGgCoWQFQRAEQRA0gVCygiAIgiAImkAoWUEQBEEQBE1gtlGyeh1/O72Ov73V70EQBEEQBF8lpqlkpZQuSymNSik9XfzWPaV0T0rpRX/v5r+nlNJ5KaVhKaXBKaXezUx8EARBEATB7Mr0eLL+Dmxd99vxwL1mtgxwr38H2AZYxl+HABfMmmQGQRAEQRB8tZimkmVmDwLv1f28A3C5f74c2LH4/QoTjwHzpJQWmkVpDYIgCIIg+MowozFZC5jZm/75LWAB/7wI8Gpx3Gv+WxAEQRAEwTeKmQ58NzMD7Iuel1I6JKX0VErpqdGjR0/z+AiMD4IgCILgq8SMKllv52FAfx/lv78OLFYct6j/NgVmdpGZrWlma/bo0WMGkxEEQRAEQTB7MqNK1q3Afv55P+CW4vd9fZbhusAHxbBiEARBEATBN4Z20zogpXQ1sCkwX0rpNeAk4Ezg2pTSQcBIYDc//A7gu8Aw4CPggCakuSF56HDEmdv+r24ZBEEQBEHQKtNUssxsz1b+2qLBsQYcPrOJCoIgCIIg+Koz26z4PquJwPggCIIgCL5MvrZKVhAEQRAEwZdJKFlBEARBEARN4BujZMU6W0EQBEEQ/C/5xihZQRAEQRAE/0tCyXLC0xUEQRAEwawklKwgCIIgCIImEEpWEARBEARBEwglazqZ1nBiDC8GQRAEQVASSlYQBEEQBEETCCUrCIIgCIKgCYSSFQRBEARB0ARCyQqCIAiCIGgCoWQ1iQiSD4IgCIJvNqFkBUEQBEEQNIFQsoIgCIIgCJpAKFlBEARBEARNIJSsIAiCIAiCJhBK1mxArCYfBEEQBF8/QskKgiAIgiBoAqFkBUEQBEEQNIFQsr6CfNHhxRhuDIIgCIL/PaFkBUEQBEEQNIFQsr6BhKcrCIIgCJpPKFlBEARBEARNIJSsIAiCIAiCJhBKVjAFEUgfBEEQBDNPKFlBEARBEARNIJSsYKYJz1cQBEEQTEkoWUEQBEEQBE0glKwgCIIgCIImEEpW8D9nZlesj+HHIAiC4KtAKFlBEARBEARNIJSs4CtP6dkKL1cQBEEwuxBKVhAEQRAEQRMIJSsIgiAIgqAJhJIVfK2J4cMgCILgyyKUrCAIgiAIgiYQSlbwjSKWgwiCIAj+V4SSFQRBEARB0ARCyQqCIAiCIGgCoWQFQUGsPh8EQRDMKmZKyUopHZVSeial9HRK6eqUUseU0hIppcdTSsNSSv9KKXWYVYkNgiAIgiD4qjDDSlZKaRHgp8CaZrYS0BbYA/gdcLaZLQ2MAQ6aFQkNgq8Cs3pfxvCcBUEQfHWZ2eHCdsCcKaV2QCfgTWBz4Hr//3Jgx5m8RxAEQRAEwVeOGVayzOx14I/AK0i5+gDoD7xvZhP9sNeARWY2kUEQBEEQBF81Zma4sBuwA7AEsDDQGdj6C5x/SErpqZTSU6NHj57RZARBEARBEMyWzMxw4ZbAy2Y22sw+A24ENgDm8eFDgEWB1xudbGYXmdmaZrZmjx49ZiIZQRAEQRAEsx8zo2S9AqybUuqUUkrAFsCzQF9gFz9mP+CWmUtiEAStEYHxQRAEsy8zE5P1OApwHwAM8WtdBBwHHJ1SGgbMC1w6C9IZBEEQBEHwlaLdtA9pHTM7CTip7ufhwNozc90gCIIgCIKvOrHiexB8jYl1t4IgCL48QskKgiAIgiBoAqFkBUEQBEEQNIFQsoIgmEwMJwZBEMw6QskKgiAIgiBoAqFkBUEw3TTydE3tvwi6D4Lgm0woWUEQBEEQBE0glKwgCIIgCIImEEpWEASzBTG8GATB141QsoIgCIIgCJpAKFlBEHwlCU9XEASzO6FkBUEQBEEQNIFQsoIgCIIgCJpAKFlBEHwtiUD6IAi+bELJCoIgCIIgaAKhZAVBEBCeriAIZj2hZAVBEARBEDSBULKCIAiCIAiaQChZQRAE00EMHwZB8EUJJSsIgiAIgqAJhJIVBEEwA0SgfBAE0yKUrCAIgiAIgiYQSlYQBEEQBEETCCUrCIIgCIKgCYSSFQRBEARB0ARCyQqCIGgCEQgfBEEoWUEQBEEQBE0glKwgCIIgCIImEEpWEATB/4AYPgyCbx6hZAVBEARBEDSBULKCIAiCIAiaQChZQRAEQRAETSCUrCAIgiAIgiYQSlYQBMGXQGwwHQRff0LJCoIgCIIgaAKhZAVBEARBEDSBULKCIAhmQ2I4MQi++oSSFQRBEARB0ARCyQqCIPiKEV6tIPhqEEpWEARBEARBEwglKwiCIAiCoAmEkhUEQfAVJ4Lkg2D2ZKaUrJTSPCml61NKz6WUhqaU1kspdU8p3ZNSetHfu82qxAZBEARBEHxVmFlP1rnAf8xseWBVYChwPHCvmS0D3OvfgyAIgi+J8HQFwZfDDCtZKaW5gY2BSwHM7FMzex/YAbjcD7sc2HHmkhgEQRAEQfDVY2Y8WUsAo4E+KaWWlNIlKaXOwAJm9qYf8xawwMwmMgiCIAiC4KvGzChZ7YDewAVmtjownrqhQTMzwBqdnFI6JKX0VErpqdGjR89EMoIgCIKZIYYTg6A5zIyS9Rrwmpk97t+vR0rX2ymlhQD8fVSjk83sIjNb08zW7NGjx0wkIwiCIAiCYPZjhpUsM3sLeDWltJz/tAXwLHArsJ//th9wy0ylMAiCIPhSCc9WEMwY7Wby/COAK1NKHYDhwAFIcbs2pXQQMBLYbSbvEQRBEARB8JVjppQsMxsIrNngry1m5rpBEARBEARfdWLF9yAIguALEcOHQTB9hJIVBEEQBEHQBELJCoIgCIIgaAKhZAVBEARBEDSBULKCIAiCIAiaQChZQRAEQRAETSCUrCAIgiAIgiYQSlYQBEEwU8Teh0HQmFCygiAIgiAImkAoWUEQBEEQBE0glKwgCIIgCIImEEpWEARBEARBEwglKwiCIAiCoAmEkhUEQRAEQdAEQskKgiAIgiBoAqFkBUEQBE0l1s0KvqmEkhUEQRAEQdAEQskKgiAI/qeEZyv4phBKVhAEQRAEQRMIJSsIgiAIgqAJhJIVBEEQBEHQBELJCoIgCIIgaAKhZAVBEARBEDSBULKCIAiCIAiaQChZQRAEQRAETSCUrCAIguBLJdbNCr6uhJIVBEEQBEHQBELJCoIgCIIgaAKhZAVBEASzFTF8GHxdCCUrCIIgCIKgCYSSFQRBEMzW1Hu2wtMVfFUIJSsIgiAIgqAJhJIVBEEQBEHQBELJCoIgCL7SxPBhMLsSSlYQBEEQBEETCCUrCIIgCIKgCYSSFQRBEARB0ARCyQqCIAiCIGgCoWQFQRAEQRA0gVCygiAIgiAImkAoWUEQBEEQBE1gppWslFLblFJLSunf/n2JlNLjKaVhKaV/pZQ6zHwygyAIgiAIvlrMCk/WkcDQ4vvvgLPNbGlgDHDQLLhHEARBEATBV4qZUrJSSosC2wKX+PcEbA5c74dcDuw4M/cIgiAIgi9CrAAfzC7MrCfrHOBYYJJ/nxd438wm+vfXgEV
|
|
|
|
|
"text/plain": [
|
|
|
|
|
"<Figure size 720x360 with 1 Axes>"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
"metadata": {
|
|
|
|
|
"needs_background": "light"
|
|
|
|
|
},
|
|
|
|
|
"output_type": "display_data"
|
|
|
|
|
}
|
|
|
|
|
],
|
|
|
|
|
"source": [
|
|
|
|
|
"pd.value_counts(test['country']).plot.bar()"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
|
|
|
|
"execution_count": 82,
|
|
|
|
|
"id": "reflected-shore",
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [
|
|
|
|
|
{
|
|
|
|
|
"data": {
|
|
|
|
|
"text/html": [
|
|
|
|
|
"<div>\n",
|
|
|
|
|
"<style scoped>\n",
|
|
|
|
|
" .dataframe tbody tr th:only-of-type {\n",
|
|
|
|
|
" vertical-align: middle;\n",
|
|
|
|
|
" }\n",
|
|
|
|
|
"\n",
|
|
|
|
|
" .dataframe tbody tr th {\n",
|
|
|
|
|
" vertical-align: top;\n",
|
|
|
|
|
" }\n",
|
|
|
|
|
"\n",
|
|
|
|
|
" .dataframe thead th {\n",
|
|
|
|
|
" text-align: right;\n",
|
|
|
|
|
" }\n",
|
|
|
|
|
"</style>\n",
|
|
|
|
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|
|
|
|
" <thead>\n",
|
|
|
|
|
" <tr style=\"text-align: right;\">\n",
|
|
|
|
|
" <th></th>\n",
|
|
|
|
|
" <th>country</th>\n",
|
|
|
|
|
" <th>year</th>\n",
|
|
|
|
|
" <th>sex</th>\n",
|
|
|
|
|
" <th>age</th>\n",
|
|
|
|
|
" <th>suicides_no</th>\n",
|
|
|
|
|
" <th>population</th>\n",
|
|
|
|
|
" </tr>\n",
|
|
|
|
|
" </thead>\n",
|
|
|
|
|
" <tbody>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>10289</th>\n",
|
|
|
|
|
" <td>Cuba</td>\n",
|
|
|
|
|
" <td>1993</td>\n",
|
|
|
|
|
" <td>female</td>\n",
|
|
|
|
|
" <td>75+ years</td>\n",
|
|
|
|
|
" <td>84.0</td>\n",
|
|
|
|
|
" <td>208800.0</td>\n",
|
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>18495</th>\n",
|
|
|
|
|
" <td>Hungary</td>\n",
|
|
|
|
|
" <td>2004</td>\n",
|
|
|
|
|
" <td>female</td>\n",
|
|
|
|
|
" <td>5-14 years</td>\n",
|
|
|
|
|
" <td>2.0</td>\n",
|
|
|
|
|
" <td>544457.0</td>\n",
|
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>1930</th>\n",
|
|
|
|
|
" <td>Aruba</td>\n",
|
|
|
|
|
" <td>1987</td>\n",
|
|
|
|
|
" <td>male</td>\n",
|
|
|
|
|
" <td>55-74 years</td>\n",
|
|
|
|
|
" <td>0.0</td>\n",
|
|
|
|
|
" <td>3118.0</td>\n",
|
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>20315</th>\n",
|
|
|
|
|
" <td>Italy</td>\n",
|
|
|
|
|
" <td>2001</td>\n",
|
|
|
|
|
" <td>male</td>\n",
|
|
|
|
|
" <td>75+ years</td>\n",
|
|
|
|
|
" <td>560.0</td>\n",
|
|
|
|
|
" <td>1675192.0</td>\n",
|
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>15269</th>\n",
|
|
|
|
|
" <td>Georgia</td>\n",
|
|
|
|
|
" <td>1993</td>\n",
|
|
|
|
|
" <td>female</td>\n",
|
|
|
|
|
" <td>75+ years</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" <td>133600.0</td>\n",
|
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>...</th>\n",
|
|
|
|
|
" <td>...</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
|
|
|
|
" <td>...</td>\n",
|
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>35206</th>\n",
|
|
|
|
|
" <td>Singapore</td>\n",
|
|
|
|
|
" <td>1981</td>\n",
|
|
|
|
|
" <td>male</td>\n",
|
|
|
|
|
" <td>55-74 years</td>\n",
|
|
|
|
|
" <td>18.0</td>\n",
|
|
|
|
|
" <td>108600.0</td>\n",
|
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>33416</th>\n",
|
|
|
|
|
" <td>Saint Kitts and Nevis</td>\n",
|
|
|
|
|
" <td>1987</td>\n",
|
|
|
|
|
" <td>male</td>\n",
|
|
|
|
|
" <td>35-54 years</td>\n",
|
|
|
|
|
" <td>0.0</td>\n",
|
|
|
|
|
" <td>NaN</td>\n",
|
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>7622</th>\n",
|
|
|
|
|
" <td>Bulgaria</td>\n",
|
|
|
|
|
" <td>2011</td>\n",
|
|
|
|
|
" <td>female</td>\n",
|
|
|
|
|
" <td>35-54 years</td>\n",
|
|
|
|
|
" <td>41.0</td>\n",
|
|
|
|
|
" <td>1036483.0</td>\n",
|
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>37277</th>\n",
|
|
|
|
|
" <td>Suriname</td>\n",
|
|
|
|
|
" <td>1982</td>\n",
|
|
|
|
|
" <td>female</td>\n",
|
|
|
|
|
" <td>75+ years</td>\n",
|
|
|
|
|
" <td>1.0</td>\n",
|
|
|
|
|
" <td>3100.0</td>\n",
|
|
|
|
|
" </tr>\n",
|
|
|
|
|
" <tr>\n",
|
|
|
|
|
" <th>13448</th>\n",
|
|
|
|
|
" <td>El Salvador</td>\n",
|
|
|
|
|
" <td>2014</td>\n",
|
|
|
|
|
" <td>male</td>\n",
|
|
|
|
|
" <td>35-54 years</td>\n",
|
|
|
|
|
" <td>85.0</td>\n",
|
|
|
|
|
" <td>586412.0</td>\n",
|
|
|
|
|
" </tr>\n",
|
|
|
|
|
" </tbody>\n",
|
|
|
|
|
"</table>\n",
|
|
|
|
|
"<p>26265 rows × 6 columns</p>\n",
|
|
|
|
|
"</div>"
|
|
|
|
|
],
|
|
|
|
|
"text/plain": [
|
|
|
|
|
" country year sex age suicides_no \\\n",
|
|
|
|
|
"10289 Cuba 1993 female 75+ years 84.0 \n",
|
|
|
|
|
"18495 Hungary 2004 female 5-14 years 2.0 \n",
|
|
|
|
|
"1930 Aruba 1987 male 55-74 years 0.0 \n",
|
|
|
|
|
"20315 Italy 2001 male 75+ years 560.0 \n",
|
|
|
|
|
"15269 Georgia 1993 female 75+ years NaN \n",
|
|
|
|
|
"... ... ... ... ... ... \n",
|
|
|
|
|
"35206 Singapore 1981 male 55-74 years 18.0 \n",
|
|
|
|
|
"33416 Saint Kitts and Nevis 1987 male 35-54 years 0.0 \n",
|
|
|
|
|
"7622 Bulgaria 2011 female 35-54 years 41.0 \n",
|
|
|
|
|
"37277 Suriname 1982 female 75+ years 1.0 \n",
|
|
|
|
|
"13448 El Salvador 2014 male 35-54 years 85.0 \n",
|
|
|
|
|
"\n",
|
|
|
|
|
" population \n",
|
|
|
|
|
"10289 208800.0 \n",
|
|
|
|
|
"18495 544457.0 \n",
|
|
|
|
|
"1930 3118.0 \n",
|
|
|
|
|
"20315 1675192.0 \n",
|
|
|
|
|
"15269 133600.0 \n",
|
|
|
|
|
"... ... \n",
|
|
|
|
|
"35206 108600.0 \n",
|
|
|
|
|
"33416 NaN \n",
|
|
|
|
|
"7622 1036483.0 \n",
|
|
|
|
|
"37277 3100.0 \n",
|
|
|
|
|
"13448 586412.0 \n",
|
|
|
|
|
"\n",
|
|
|
|
|
"[26265 rows x 6 columns]"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
"execution_count": 82,
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"output_type": "execute_result"
|
|
|
|
|
}
|
|
|
|
|
],
|
|
|
|
|
"source": [
|
|
|
|
|
"train"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
|
|
|
|
"execution_count": null,
|
|
|
|
|
"id": "second-crime",
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [],
|
|
|
|
|
"source": [
|
|
|
|
|
"# Zadanie 4\n",
|
|
|
|
|
"# Wydaje mi sie ze w moim zbiorze nie jest wymagania zadna normalizacja danych."
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
|
|
|
|
"execution_count": 93,
|
|
|
|
|
"id": "spread-yield",
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [
|
|
|
|
|
{
|
|
|
|
|
"name": "stdout",
|
|
|
|
|
"output_type": "stream",
|
|
|
|
|
"text": [
|
|
|
|
|
"country 0\n",
|
|
|
|
|
"year 0\n",
|
|
|
|
|
"sex 0\n",
|
|
|
|
|
"age 0\n",
|
|
|
|
|
"suicides_no 1346\n",
|
|
|
|
|
"population 3282\n",
|
|
|
|
|
"dtype: int64\n",
|
|
|
|
|
"country 0\n",
|
|
|
|
|
"year 0\n",
|
|
|
|
|
"sex 0\n",
|
|
|
|
|
"age 0\n",
|
|
|
|
|
"suicides_no 456\n",
|
|
|
|
|
"population 1048\n",
|
|
|
|
|
"dtype: int64\n",
|
|
|
|
|
"country 0\n",
|
|
|
|
|
"year 0\n",
|
|
|
|
|
"sex 0\n",
|
|
|
|
|
"age 0\n",
|
|
|
|
|
"suicides_no 454\n",
|
|
|
|
|
"population 1130\n",
|
|
|
|
|
"dtype: int64\n"
|
|
|
|
|
]
|
|
|
|
|
}
|
|
|
|
|
],
|
|
|
|
|
"source": [
|
|
|
|
|
"# zadanie 5\n",
|
|
|
|
|
"print(train.isnull().sum())\n",
|
|
|
|
|
"print(validate.isnull().sum())\n",
|
|
|
|
|
"print(test.isnull().sum())"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
|
|
|
|
"execution_count": 94,
|
|
|
|
|
"id": "conventional-orleans",
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [],
|
|
|
|
|
"source": [
|
|
|
|
|
"train.dropna(inplace=True)\n",
|
|
|
|
|
"validate.dropna(inplace=True)\n",
|
|
|
|
|
"test.dropna(inplace=True)"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
|
|
|
|
"execution_count": 95,
|
|
|
|
|
"id": "secret-coffee",
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [
|
|
|
|
|
{
|
|
|
|
|
"name": "stdout",
|
|
|
|
|
"output_type": "stream",
|
|
|
|
|
"text": [
|
|
|
|
|
" country year sex age suicides_no population\n",
|
|
|
|
|
"10289 Cuba 1993 female 75+ years 84.0 208800.0\n",
|
|
|
|
|
"18495 Hungary 2004 female 5-14 years 2.0 544457.0\n",
|
|
|
|
|
"1930 Aruba 1987 male 55-74 years 0.0 3118.0\n",
|
|
|
|
|
"20315 Italy 2001 male 75+ years 560.0 1675192.0\n",
|
|
|
|
|
"23505 Luxembourg 1984 male 5-14 years 0.0 22100.0\n",
|
|
|
|
|
"... ... ... ... ... ... ...\n",
|
|
|
|
|
"18031 Hong Kong SAR 2002 male 25-34 years 145.0 487800.0\n",
|
|
|
|
|
"35206 Singapore 1981 male 55-74 years 18.0 108600.0\n",
|
|
|
|
|
"7622 Bulgaria 2011 female 35-54 years 41.0 1036483.0\n",
|
|
|
|
|
"37277 Suriname 1982 female 75+ years 1.0 3100.0\n",
|
|
|
|
|
"13448 El Salvador 2014 male 35-54 years 85.0 586412.0\n",
|
|
|
|
|
"\n",
|
|
|
|
|
"[21637 rows x 6 columns]\n",
|
|
|
|
|
" country year sex age suicides_no population\n",
|
|
|
|
|
"19952 Israel 2009 male 35-54 years 91.0 836965.0\n",
|
|
|
|
|
"36424 South Africa 2001 female 55-74 years 6.0 2053745.0\n",
|
|
|
|
|
"23461 Luxembourg 1981 female 25-34 years 3.0 28300.0\n",
|
|
|
|
|
"16512 Grenada 2009 female 15-24 years 0.0 11815.0\n",
|
|
|
|
|
"12873 Ecuador 2015 male 5-14 years 35.0 1569519.0\n",
|
|
|
|
|
"... ... ... ... ... ... ...\n",
|
|
|
|
|
"7523 Bulgaria 2002 male 75+ years 181.0 198560.0\n",
|
|
|
|
|
"42715 Uruguay 2009 male 25-34 years 79.0 238754.0\n",
|
|
|
|
|
"36799 Spain 1995 male 25-34 years 398.0 3196300.0\n",
|
|
|
|
|
"1559 Armenia 1986 male 75+ years 2.0 29000.0\n",
|
|
|
|
|
"13313 El Salvador 2003 female 75+ years 1.0 71062.0\n",
|
|
|
|
|
"\n",
|
|
|
|
|
"[7251 rows x 6 columns]\n",
|
|
|
|
|
" country year sex age suicides_no population\n",
|
|
|
|
|
"13528 Estonia 1988 female 55-74 years 40.0 169100.0\n",
|
|
|
|
|
"25017 Mauritius 1991 male 5-14 years 0.0 103900.0\n",
|
|
|
|
|
"19317 Ireland 1992 male 5-14 years 3.0 339800.0\n",
|
|
|
|
|
"7928 Canada 1999 male 35-54 years 1442.0 4743615.0\n",
|
|
|
|
|
"2107 Aruba 2011 male 25-34 years 0.0 5440.0\n",
|
|
|
|
|
"... ... ... ... ... ... ...\n",
|
|
|
|
|
"37194 Sri Lanka 2001 male 15-24 years 508.0 1811743.0\n",
|
|
|
|
|
"16850 Guatemala 1984 female 35-54 years 0.0 596000.0\n",
|
|
|
|
|
"6265 Brazil 1984 female 25-34 years 233.0 10566400.0\n",
|
|
|
|
|
"860 Antigua and Barbuda 1995 male 35-54 years 0.0 7809.0\n",
|
|
|
|
|
"15795 Germany 2011 female 5-14 years 9.0 3641215.0\n",
|
2021-03-21 20:44:09 +01:00
|
|
|
|
"\n",
|
2021-03-22 00:03:37 +01:00
|
|
|
|
"[7172 rows x 6 columns]\n"
|
2021-03-21 20:44:09 +01:00
|
|
|
|
]
|
|
|
|
|
}
|
|
|
|
|
],
|
2021-03-21 20:43:50 +01:00
|
|
|
|
"source": [
|
2021-03-22 00:03:37 +01:00
|
|
|
|
"print(train)\n",
|
|
|
|
|
"print(validate)\n",
|
|
|
|
|
"print(test)"
|
2021-03-21 20:43:50 +01:00
|
|
|
|
]
|
2021-03-21 20:44:09 +01:00
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
|
|
|
|
"execution_count": null,
|
2021-03-22 00:03:37 +01:00
|
|
|
|
"id": "engaged-enough",
|
2021-03-21 20:44:09 +01:00
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [],
|
|
|
|
|
"source": []
|
2021-03-21 20:43:50 +01:00
|
|
|
|
}
|
|
|
|
|
],
|
|
|
|
|
"metadata": {
|
|
|
|
|
"kernelspec": {
|
|
|
|
|
"display_name": "Python 3",
|
|
|
|
|
"language": "python",
|
|
|
|
|
"name": "python3"
|
|
|
|
|
},
|
|
|
|
|
"language_info": {
|
|
|
|
|
"codemirror_mode": {
|
|
|
|
|
"name": "ipython",
|
|
|
|
|
"version": 3
|
|
|
|
|
},
|
|
|
|
|
"file_extension": ".py",
|
|
|
|
|
"mimetype": "text/x-python",
|
|
|
|
|
"name": "python",
|
|
|
|
|
"nbconvert_exporter": "python",
|
|
|
|
|
"pygments_lexer": "ipython3",
|
2021-03-22 00:03:37 +01:00
|
|
|
|
"version": "3.8.5"
|
2021-03-21 20:43:50 +01:00
|
|
|
|
}
|
|
|
|
|
},
|
2021-03-21 20:28:34 +01:00
|
|
|
|
"nbformat": 4,
|
|
|
|
|
"nbformat_minor": 5
|
|
|
|
|
}
|