Zadanie frameworki ML
This commit is contained in:
parent
0b95b22cfa
commit
12fcd199fa
@ -7,10 +7,13 @@ RUN apt install -y curl
|
|||||||
RUN pip3 install --user pandas
|
RUN pip3 install --user pandas
|
||||||
RUN pip3 install --user matplotlib
|
RUN pip3 install --user matplotlib
|
||||||
RUN pip3 install --user numpy
|
RUN pip3 install --user numpy
|
||||||
|
RUN pip3 install --user tensorflow
|
||||||
|
RUN pip3 install --user sklearn
|
||||||
|
|
||||||
WORKDIR /app
|
WORKDIR /app
|
||||||
|
|
||||||
COPY ./preparations.sh ./
|
COPY ./preparations.sh ./
|
||||||
COPY ./preprocesing_python.py ./
|
COPY ./preprocesing_python.py ./
|
||||||
|
COPY ./training.py ./
|
||||||
|
|
||||||
# CMD ./preparations.sh
|
# CMD ./preparations.sh
|
||||||
|
7213
results.csv
Normal file
7213
results.csv
Normal file
File diff suppressed because it is too large
Load Diff
107
training.py
107
training.py
@ -3,60 +3,87 @@ import pandas as pd
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
import os
|
import os
|
||||||
import tensorflow as tf
|
|
||||||
from countries_map import countries
|
from countries_map import countries
|
||||||
|
import tensorflow as tf
|
||||||
|
from tensorflow.keras.layers import Input, Dense, Activation, Dropout
|
||||||
|
from tensorflow.keras.models import Model
|
||||||
|
from tensorflow.keras.callbacks import EarlyStopping
|
||||||
|
from keras.models import Sequential
|
||||||
|
from sklearn.metrics import mean_squared_error
|
||||||
|
from tensorflow import keras
|
||||||
|
from tensorflow.keras import layers
|
||||||
|
from tensorflow.keras.layers.experimental import preprocessing
|
||||||
|
|
||||||
|
|
||||||
def mapSet(set):
|
age = {"5-14 years": 0, "15-24 years": 1, "25-34 years": 2,
|
||||||
age = {"5-14 years": 0, "15-24 years": 1, "25-34 years": 2,
|
|
||||||
"35-54 years": 3, "55-74 years": 4, "75+ years": 5}
|
"35-54 years": 3, "55-74 years": 4, "75+ years": 5}
|
||||||
sex = {"male": 0, "female": 1}
|
sex = {"male": 0, "female": 1}
|
||||||
|
|
||||||
set["age"].replace(age, inplace=True)
|
|
||||||
set["sex"].replace(sex, inplace=True)
|
|
||||||
set["country"].replace({v: k for k, v in countries.items()}, inplace=True)
|
|
||||||
|
|
||||||
return set
|
|
||||||
|
|
||||||
|
|
||||||
column_names = ["country", "year", "sex", "age", "suicides_no", "population"]
|
|
||||||
feature_names = ["country", "year", "sex", "age", "population"]
|
|
||||||
label_name = column_names[4]
|
|
||||||
|
|
||||||
|
# wczytanie danych
|
||||||
sc = pd.read_csv('who_suicide_statistics.csv')
|
sc = pd.read_csv('who_suicide_statistics.csv')
|
||||||
|
print(sc.shape)
|
||||||
|
|
||||||
|
# Usunięcie niepełnych danych
|
||||||
|
sc.dropna(inplace=True)
|
||||||
|
|
||||||
|
# Kategoryzacja
|
||||||
|
sc = pd.get_dummies(
|
||||||
|
sc, columns=['age', 'sex', 'country'], prefix='', prefix_sep='')
|
||||||
|
|
||||||
|
|
||||||
|
# podział na train validate i test
|
||||||
train, validate, test = np.split(sc.sample(frac=1, random_state=42),
|
train, validate, test = np.split(sc.sample(frac=1, random_state=42),
|
||||||
[int(.6*len(sc)), int(.8*len(sc))])
|
[int(.6*len(sc)), int(.8*len(sc))])
|
||||||
train.dropna(inplace=True)
|
|
||||||
validate.dropna(inplace=True)
|
|
||||||
test.dropna(inplace=True)
|
|
||||||
|
|
||||||
train_n = mapSet(train)
|
# podział train set
|
||||||
validate_n = mapSet(validate)
|
X_train = train.loc[:, train.columns != 'suicides_no']
|
||||||
test_n = mapSet(validate)
|
y_train = train[['suicides_no']]
|
||||||
|
X_test = test.loc[:, train.columns != 'suicides_no']
|
||||||
|
y_test = test[['suicides_no']]
|
||||||
|
|
||||||
train_csv = pd.DataFrame.to_csv(train_n, index=False)
|
normalizer = preprocessing.Normalization()
|
||||||
|
normalizer.adapt(np.array(X_train))
|
||||||
|
|
||||||
train_dataset = tf.data.experimental.make_csv_dataset(
|
first = np.array(X_train[:1])
|
||||||
train_csv,
|
with np.printoptions(precision=2, suppress=True):
|
||||||
1000,
|
print('First example:', first)
|
||||||
column_names=column_names,
|
print()
|
||||||
label_name=label_name,
|
print('Normalized:', normalizer(first).numpy())
|
||||||
num_epochs=1)
|
|
||||||
|
|
||||||
features, labels = next(iter(train_dataset))
|
model = tf.keras.Sequential([
|
||||||
print(features)
|
normalizer,
|
||||||
|
layers.Dense(units=1)
|
||||||
|
])
|
||||||
|
model.predict(X_train[:10])
|
||||||
|
|
||||||
plt.scatter(features['year'],
|
# Compile model
|
||||||
features['age'],
|
model.compile(
|
||||||
c=labels,
|
optimizer=tf.optimizers.Adam(learning_rate=0.1),
|
||||||
cmap='sex')
|
loss='mean_absolute_error')
|
||||||
|
|
||||||
plt.xlabel("year")
|
# Train model
|
||||||
plt.ylabel("age")
|
history = model.fit(
|
||||||
plt.show()
|
X_train, y_train,
|
||||||
|
epochs=30,
|
||||||
|
validation_split=0.2)
|
||||||
|
|
||||||
print("Features: {}".format(feature_names))
|
test_results = {}
|
||||||
print("Label: {}".format(label_name))
|
|
||||||
|
|
||||||
# print(train)
|
test_results['model'] = model.evaluate(
|
||||||
|
X_test, y_test, verbose=0)
|
||||||
|
|
||||||
|
test_predictions = model.predict(X_test).flatten()
|
||||||
|
|
||||||
|
# a = plt.axes(aspect='equal')
|
||||||
|
# plt.scatter(y_test, test_predictions)
|
||||||
|
# plt.xlabel('True values [sucides_no]')
|
||||||
|
# plt.ylabel('Predictions values [sucides_no]')
|
||||||
|
# lims = [0, 5000]
|
||||||
|
# plt.xlim(lims)
|
||||||
|
# plt.ylim(lims)
|
||||||
|
# _ = plt.plot(lims, lims)
|
||||||
|
|
||||||
|
# plt.show()
|
||||||
|
|
||||||
|
predictions = model.predict(X_test)
|
||||||
|
pd.DataFrame(predictions).to_csv('results.csv')
|
||||||
|
Loading…
Reference in New Issue
Block a user