.
This commit is contained in:
parent
b965a730c5
commit
ba432415fb
@ -4,19 +4,32 @@ from tensorflow import keras
|
||||
import matplotlib.pyplot as plt
|
||||
from keras import backend as K
|
||||
from sklearn.metrics import mean_squared_error
|
||||
|
||||
# model = keras.models.load_model('suicide_model.h5')
|
||||
from tensorflow.keras import layers
|
||||
from tensorflow.keras.layers.experimental import preprocessing
|
||||
import tensorflow as tf
|
||||
|
||||
train = pd.read_csv('train.csv')
|
||||
test = pd.read_csv('test.csv')
|
||||
validate = pd.read_csv('validate.csv')
|
||||
|
||||
print(train)
|
||||
# # podział train set
|
||||
# X_train = train.loc[:, train.columns != 'suicides_no']
|
||||
# y_train = train[['suicides_no']]
|
||||
# X_test = test.loc[:, train.columns != 'suicides_no']
|
||||
# y_test = test[['suicides_no']]
|
||||
X_train = train.loc[:, train.columns != 'suicides_no']
|
||||
y_train = train[['suicides_no']]
|
||||
X_test = test.loc[:, train.columns != 'suicides_no']
|
||||
y_test = test[['suicides_no']]
|
||||
|
||||
normalizer = preprocessing.Normalization()
|
||||
normalizer.adapt(np.array(X_train))
|
||||
|
||||
model = tf.keras.Sequential([
|
||||
normalizer,
|
||||
layers.Dense(units=1)
|
||||
])
|
||||
|
||||
model.summary()
|
||||
|
||||
model.load_weights('suicide_model.h5')
|
||||
|
||||
|
||||
# predictions = model.predict(X_test)
|
||||
|
||||
|
@ -27,10 +27,10 @@ train, validate, test = np.split(sc.sample(frac=1, random_state=42),
|
||||
[int(.6*len(sc)), int(.8*len(sc))])
|
||||
|
||||
# zapis do plików
|
||||
train.to_csv('train.csv')
|
||||
validate.to_csv('validate.csv')
|
||||
test.to_csv('test.csv')
|
||||
train.to_csv('train.csv', index=False)
|
||||
validate.to_csv('validate.csv', index=False)
|
||||
test.to_csv('test.csv', index=False)
|
||||
|
||||
print(train)
|
||||
print(validate)
|
||||
print(test)
|
||||
# print(train)
|
||||
# print(validate)
|
||||
# print(test)
|
||||
|
@ -70,6 +70,8 @@ history = model.fit(
|
||||
epochs=EPOCHS,
|
||||
validation_split=0.2)
|
||||
|
||||
model.save_weights('suicide_model.h5')
|
||||
|
||||
test_results = {}
|
||||
|
||||
test_results['model'] = model.evaluate(
|
||||
@ -90,5 +92,4 @@ test_predictions = model.predict(X_test).flatten()
|
||||
|
||||
predictions = model.predict(X_test)
|
||||
pd.DataFrame(predictions).to_csv('results.csv')
|
||||
|
||||
model.save('suicide_model.h5')
|
||||
model.summary()
|
||||
|
Loading…
Reference in New Issue
Block a user