ium_434784/preprocesing_python.py
2021-04-12 00:30:39 +02:00

42 lines
1.1 KiB
Python

import sys
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
sc = pd.read_csv('who_suicide_statistics.csv')
train, validate, test = np.split(sc.sample(frac=1, random_state=42),
[int(.6*len(sc)), int(.8*len(sc))])
print("Train set: ", train.size)
print("Validate set: ", validate.size)
print("Test set: ", test.size)
print(train.describe(include='all'))
print(train.country.value_counts())
print(validate.describe(include='all'))
print(validate.country.value_counts())
print(test.describe(include='all'))
print(test.country.value_counts())
pd.value_counts(train['country']).plot.bar()
pd.value_counts(validate['country']).plot.bar()
pd.value_counts(test['country']).plot.bar()
test['age'] = test['age'].map(lambda x: x.rstrip('years'))
train['age'] = train['age'].map(lambda x: x.rstrip('years'))
validate['age'] = validate['age'].map(lambda x: x.rstrip('years'))
print(train.isnull().sum())
print(validate.isnull().sum())
print(test.isnull().sum())
train.dropna(inplace=True)
validate.dropna(inplace=True)
test.dropna(inplace=True)
print(train)
print(validate)
print(test)