cleanup code
This commit is contained in:
parent
63d362dc73
commit
04f2c0389d
1144
dev-0/out.tsv
1144
dev-0/out.tsv
File diff suppressed because it is too large
Load Diff
104
main.py
104
main.py
@ -6,6 +6,8 @@ from gensim import downloader
|
||||
from nltk.tokenize import word_tokenize
|
||||
import csv
|
||||
|
||||
BATCH_SIZE = 5
|
||||
|
||||
|
||||
class NeuralNetworkModel(torch.nn.Module):
|
||||
|
||||
@ -45,75 +47,71 @@ def read_data():
|
||||
return x_labels, y_labels, x_train, y_train, x_dev, x_test
|
||||
|
||||
|
||||
x_labels, y_labels, x_train, y_train, x_dev, x_test = read_data()
|
||||
def process_data(x_labels, y_labels, x_train, y_train, x_dev, x_test):
|
||||
x_train = x_train[x_labels[0]].str.lower()
|
||||
x_dev = x_dev[x_labels[0]].str.lower()
|
||||
x_test = x_test[x_labels[0]].str.lower()
|
||||
y_train = y_train[y_labels[0]]
|
||||
|
||||
x_train = x_train[x_labels[0]].str.lower()
|
||||
x_dev = x_dev[x_labels[0]].str.lower()
|
||||
x_test = x_test[x_labels[0]].str.lower()
|
||||
y_train = y_train[y_labels[0]]
|
||||
x_train = [word_tokenize(x) for x in x_train]
|
||||
x_dev = [word_tokenize(x) for x in x_dev]
|
||||
x_test = [word_tokenize(x) for x in x_test]
|
||||
|
||||
x_train = [word_tokenize(x) for x in x_train]
|
||||
x_dev = [word_tokenize(x) for x in x_dev]
|
||||
x_test = [word_tokenize(x) for x in x_test]
|
||||
w2v = downloader.load('glove-wiki-gigaword-200')
|
||||
|
||||
w2v = downloader.load('glove-wiki-gigaword-200')
|
||||
x_train = [np.mean([w2v[w] for w in d if w in w2v] or [
|
||||
np.zeros(200)], axis=0) for d in x_train]
|
||||
x_dev = [np.mean([w2v[w] for w in d if w in w2v]
|
||||
or [np.zeros(200)], axis=0) for d in x_dev]
|
||||
x_test = [np.mean([w2v[w] for w in d if w in w2v]
|
||||
or [np.zeros(200)], axis=0) for d in x_test]
|
||||
|
||||
x_train = [np.mean([w2v[word] for word in doc if word in w2v] or [
|
||||
np.zeros(200)], axis=0) for doc in x_train]
|
||||
x_dev = [np.mean([w2v[word] for word in doc if word in w2v]
|
||||
or [np.zeros(200)], axis=0) for doc in x_dev]
|
||||
x_test = [np.mean([w2v[word] for word in doc if word in w2v]
|
||||
or [np.zeros(200)], axis=0) for doc in x_test]
|
||||
return x_train, y_train, x_dev, x_test
|
||||
|
||||
nn_model = NeuralNetworkModel()
|
||||
BATCH_SIZE = 5
|
||||
criterion = torch.nn.BCELoss()
|
||||
optimizer = torch.optim.SGD(nn_model.parameters(), lr=0.1)
|
||||
|
||||
for epoch in range(5):
|
||||
nn_model.train()
|
||||
for i in range(0, y_train.shape[0], BATCH_SIZE):
|
||||
X = x_train[i:i+BATCH_SIZE]
|
||||
X = torch.tensor(X)
|
||||
Y = y_train[i:i+BATCH_SIZE]
|
||||
Y = torch.tensor(Y.astype(np.float32).to_numpy()).reshape(-1, 1)
|
||||
def predict(model, x_data, out_path):
|
||||
y_out = []
|
||||
model.eval()
|
||||
with torch.no_grad():
|
||||
for i in range(0, len(x_data), BATCH_SIZE):
|
||||
|
||||
Y_predictions = nn_model(X.float())
|
||||
x = x_data[i:i+BATCH_SIZE]
|
||||
x = torch.tensor(x)
|
||||
pred = nn_model(x.float())
|
||||
|
||||
loss = criterion(Y_predictions, Y)
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
y_pred = (pred > 0.5)
|
||||
y_out.extend(y_pred)
|
||||
|
||||
y_dev = []
|
||||
y_test = []
|
||||
y_data = np.asarray(y_out, dtype=np.int32)
|
||||
pd.DataFrame(y_data).to_csv(out_path, sep='\t', index=False, header=False)
|
||||
|
||||
nn_model.eval()
|
||||
|
||||
with torch.no_grad():
|
||||
for i in range(0, len(x_dev), BATCH_SIZE):
|
||||
X = x_dev[i:i+BATCH_SIZE]
|
||||
X = torch.tensor(X)
|
||||
if __name__ == "__main__":
|
||||
|
||||
outputs = nn_model(X.float())
|
||||
x_labels, y_labels, x_train, y_train, x_dev, x_test = read_data()
|
||||
|
||||
y = (outputs > 0.5)
|
||||
y_dev.extend(y)
|
||||
x_train, y_train, x_dev, x_test = process_data(
|
||||
x_labels, y_labels, x_train, y_train, x_dev, x_test)
|
||||
|
||||
for i in range(0, len(x_test), BATCH_SIZE):
|
||||
X = x_test[i:i+BATCH_SIZE]
|
||||
X = torch.tensor(X)
|
||||
nn_model = NeuralNetworkModel()
|
||||
criterion = torch.nn.BCELoss()
|
||||
optimizer = torch.optim.SGD(nn_model.parameters(), lr=0.1)
|
||||
|
||||
outputs = nn_model(X.float())
|
||||
for epoch in range(5):
|
||||
nn_model.train()
|
||||
|
||||
y = (outputs > 0.5)
|
||||
y_test.extend(y)
|
||||
for i in range(0, y_train.shape[0], BATCH_SIZE):
|
||||
X = x_train[i:i+BATCH_SIZE]
|
||||
X = torch.tensor(X)
|
||||
Y = y_train[i:i+BATCH_SIZE]
|
||||
Y = torch.tensor(Y.astype(np.float32).to_numpy()).reshape(-1, 1)
|
||||
|
||||
y_dev = np.asarray(y_dev, dtype=np.int32)
|
||||
y_test = np.asarray(y_test, dtype=np.int32)
|
||||
Y_predictions = nn_model(X.float())
|
||||
|
||||
Y_dev = pd.DataFrame({'label': y_dev})
|
||||
Y_test = pd.DataFrame({'label': y_test})
|
||||
loss = criterion(Y_predictions, Y)
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
Y_dev.to_csv(r'dev-0/out.tsv', sep='\t', index=False, header=False)
|
||||
Y_test.to_csv(r'test-A/out.tsv', sep='\t', index=False, header=False)
|
||||
predict(nn_model, x_dev, 'dev-0/out.tsv')
|
||||
predict(nn_model, x_test, 'test-A/out.tsv')
|
||||
|
978
test-A/out.tsv
978
test-A/out.tsv
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user