Added model training

This commit is contained in:
Maciej Sobkowiak 2021-05-25 22:27:39 +02:00
parent 894a4fbebb
commit 1b3c4dd9ef

63
main.py
View File

@ -1,8 +1,28 @@
from nltk.util import pr
import pandas as pd
import numpy as np
import torch
from gensim import downloader
from nltk.tokenize import word_tokenize
class NeuralNetworkModel(torch.nn.Module):
def __init__(self):
dim = 100
super(NeuralNetworkModel, self).__init__()
self.fc1 = torch.nn.Linear(dim, 500)
self.fc2 = torch.nn.Linear(500, 1)
def forward(self, x):
x = self.fc1(x)
x = torch.relu(x)
x = self.fc2(x)
x = torch.sigmoid(x)
return x
def read_data():
x_labels = (pd.read_csv('in-header.tsv', sep='\t')).columns
y_labels = (pd.read_csv('out-header.tsv', sep='\t')).columns
@ -15,7 +35,15 @@ x_dev = pd.read_table('dev-0/in.tsv', error_bad_lines=False,
x_test = pd.read_table('test-A/in.tsv', error_bad_lines=False,
header=None, quoting=3, names=x_labels)
print(x_train)
# remove some rows for faster development
remove_n = 200000
drop_indices = np.random.choice(x_train.index, remove_n, replace=False)
x_train = x_train.drop(drop_indices)
return x_labels, y_labels, x_train, y_train, x_dev, x_test
x_labels, y_labels, x_train, y_train, x_dev, x_test = read_data()
x_train = x_train[x_labels[0]].str.lower()
x_dev = x_dev[x_labels[0]].str.lower()
@ -26,16 +54,33 @@ x_train = [word_tokenize(x) for x in x_train]
x_dev = [word_tokenize(x) for x in x_dev]
x_test = [word_tokenize(x) for x in x_test]
print(x_train)
w2v = downloader.load('glove-wiki-gigaword-200')
x_train = [np.mean([w2v[word] for word in doc if word in w2v] or [
np.zeros(50)], axis=0) for doc in x_train]
x_dev = [np.mean([w2v[word] for word in doc if word in w2v]
or [np.zeros(50)], axis=0) for doc in x_dev]
x_test = [np.mean([w2v[word] for word in doc if word in w2v]
or [np.zeros(50)], axis=0) for doc in x_test]
# w2v = downloader.load('glove-wiki-gigaword-200')
nn_model = NeuralNetworkModel()
BATCH_SIZE = 5
criterion = torch.nn.BCELoss()
optimizer = torch.optim.SGD(nn_model.parameters(), lr=0.1)
# def document_vector(doc):
# return np.mean([word2vec[word] for word in doc if word in word2vec] or [np.zeros(50)], axis=0)
for epoch in range(5):
nn_model.train()
for i in range(0, y_train.shape[0], BATCH_SIZE):
X = x_train[i:i+BATCH_SIZE]
X = torch.tensor(X.astype(np.float32).todense())
Y = y_train[i:i+BATCH_SIZE]
Y = torch.tensor(Y.astype(np.float32)).reshape(-1, 1)
# for doc in x_train:
Y_predictions = nn_model(X)
# x_train = [document_vector(doc) for doc in x_train]
# x_dev = [document_vector(doc) for doc in x_dev]
# x_test = [document_vector(doc) for doc in x_test]
optimizer.zero_grad()
loss = criterion(Y_predictions, Y)
loss.backward()
optimizer.step()
print(Y_predictions)